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A Gaussian law (= probability measure) P on a finite-dimensional vector
space V is of the form dP(x) = exp(— Q(x)) dx;, where Q is a quadratic
polynomial and dx;, is Lebesgue measure on a linear variety (affine subspace)
J. Such laws, alsc called normal, are staples of multivariate statistics ([1], [34],
[43]), along with their relatives such as Wishart distributions.

Let EX = (X dP, the mean of the (vector or scalar) X. In the rest of this
review Gaussian laws will all have mean 0 unless otherwise stated. If 4, B, C
and D are any four linear forms on V, then E(ABCD) = E(AB)E(CD) +
E(AC)E(BD) + E(AD)E(BC). So, E(A*) = 3E(A?), the first of a sequence
of identities which characterize Gaussian laws on R'.

Given a probability space (2, %, Pr) and any set T, a Gaussian process is
any real function X on T X @ such that for each finite set F C T,
{X(t, -)},er has a Gaussian law on R”. Let X(¢) = X(¢, *).

If T is a Hilbert space H, the isonormal Gaussian process L maps H
isometrically into an L%, Pr), with EL(x, -)L(y, *) = (x, y), the inner pro-
duct; this fixes the laws of L. For any Gaussian process X, there is a ¥ with
the same laws and Y(¢, w) = L(g(t), w), where g maps 7 into some Hilbert
space H. So L is the Gaussian process [13]; it clothes a pristine Hilbert space
in full Gaussian attire.

Trajectories. Probabilists like to pick an w and follow the wandering path,
or sample function, ¢ — X(¢, @) ({3}, [13], [20], [48]). The speed at which
exp(— x?/2) goes to 0 as x — oo lets us make (almost) all paths continuous if
g(T) in H is compact enough. If 7 = R, the process X is called stationary if
all its laws are preserved by translations ¢ — ¢ + h. For a stationary X
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restricted to a finite interval T, Fernique ([19], [20]) proved that “compact
enough” can be exactly measured by Kolmogorov’s metric entropy: if you
need N(e) points to get within & of all points of g(7), then convergence of
fd(log N(u))'/? du characterizes path-continuity (and is sufficient also for
nonstationary Gaussian processes [13]), provided g is continuous.

Sudakov [55] characterizes sample continuity in terms of a mixed volume of
infinite-dimensional convex sets. For some other recent sample function
results see, e.g., [11], [12], [48].

General parameters. As knowledge of X(¢) for real ¢ becomes refined,
attention turns toward multidimensional ¢ (“random fields”) and to linear
processes X(f, -) on spaces of test functions f (“generalized random fields™),
where the connecting idea is X(f, w) = (X (¢, w)f(¢) dt. For one class of these,
let EN(f)N(g)~ = [(Ff)(Fg)~ dp. where F denotes Fourier transform and p
is a nonnegative tempered measure. If du(y) = dy/(m* + |y]>) for some
m > 0, N is called a Nelson process, studied in quantum field theory ([8], [21],
[44], [45], [S0)).

Since a Gaussian process X, (with mean 0) is characterized by its covari-
ance EX_X,, one can look for covariances preserved by groups of isometries
of symmetric spaces [2].

Abstract Wiener spaces and reproducing kernels. The process L on a Hilbert
space H is not of the form L(h, w) = (h, M(w)) with M(w) € H (L is not
sample-continuous). But if we restrict 4 to a dense, but small enough Banach
subspace, we can take M(w) € B for any large enough Banach space B which
is the completion of H for a small enough norm. L. Gross named such norms
measurable; the arrangement (H, B) is called an abstract Wiener space, and
seems to provide the best available substitute for Lebesgue measure in doing
analysis on infinite-dimensional spaces ([9], [10], [15], [22], [23], [24], [25], [37],
[38], [40], [47]); notable is Gross’ logarithmic Sobolev inequality [25]). Con-
versely, given B, there is an H: if P is a Gaussian law on a Banach space B,
then there is a natural bounded linear map j of the dual B’ into the Hilbert
space J = L*(B, P). The adjoint j* takes J onto a subspace H Cc B C B”.
This H is the reproducing kernel Hilbert space RKHS(P). These notions
extend to spaces of sections of a vector bundle [4].

The Banach norms and spaces are, of course, not H-unitarily invariant. But
one can think of the Gaussian measure “on H™ as concentrated on an
infinite-dimensional sphere (surface) of radius Voo , equipped with a Lapla-
cian, spherical harmonics, etc. [42].

Analysis of functionals. For an orthonormal basis {¢,} of a Hilbert space
H,, the L(e,) are independent, identically distributed standard Gaussian
variables X,. Let H == L*(R, P) be the space of all complex-valued functions
f=f(X}, X5, ...) with E|f|* < oo (equivalence classes of measurable func-
tions, actually). Then H is a countable orthogonal direct sum EB;',°=0H(,,),
where H,, = K, © @D ,':olHU) and K, is the set of all jth degree (or less)
polynomials in the L(x), x € H. Let J(, be the n-fold symmetric tensor
product of H, with itself, spanned by elements

sym(x, ® - - - Qx,) = (n!)"' > Xy @ -+ 0 BX,(ny,
TE€S(n)
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where S(n) is the symmetric group of all permutations of {1,...,n}. Let
h — :h:,, denote the orthogonal projection of H onto H,. Then for each n,
there is a map L, such that for all x;,...,x, € H, L, sym(x; ® - - - ®x,))
= :L(x,) . . . L(x,):(, For some constant c,, ¢,L, is an isometry of J(, onto
H,. This structural theory, developed by Wiener [S6], von Neumann,
Kakutani [36], and Segal [51], is quintessentially Gaussian; for expositions
and more recent work see Neveu [46, Chapter 7], Hida [31], [32], Linnik [39],
Guichardet [26], and Gutmann [27].

For a bounded linear operator A from H, into itself and each n, 4
® - - - ®A (n factors) maps J(, into itself. If ||4]| < 1, then these operators,
via the above isometries, define a contraction I'(4) from H into itself. Nelson
[45] proved a sharp inequality: if 1 < p < r < o and ||4|| < (p — D)/(r -
1))!/2, then I'(4) is a contraction from L?(, P) into L"(Q, P).

Inequalities. Slepian [54] proved that if EX? = EY? and EX,X; < EY,Y, for
all 7,j then sup,X; is stochastically larger than sup,Y,. Several inequalities
relate Gaussian laws and convex sets ([6], [7], [49]). Pitt [49] proved P(4 N B)
> P(A)P(B) for P Gaussian and 4 and B symmetric convex sets in R? (for
R”, it’s a conjecture). Some inequalities follow from the logarithmic concavity
of Gaussian densities (e.g. [7]); others, from rotational invariance (e.g. [16]).

Equivalence and singularity. Hajek [28] proved that two Gaussian laws P
and Q on a vector space are either singular or equivalent (mutually absolutely
continuous). Here P and Q are equivalent if and only if the “J-divergence”
(Ep — Ep)log(dP/dQ) is finite; it is the supremum of its finite-dimensonal
analogues. Using our general representation of Gaussian processes, nonde-
generate P and Q can be written as affine transformations of each other, say
dQ(x) = dP(Ax + m); Segal [51] showed for the isonormal process, and
Feldman ([17], [18]) proved in general, that P and Q are equivalent if and
only if m € J = RKHS(P), and A = I + B where B restricted to J is a
Hilbert-Schmidt operator into J, with —1 not in its spectrum. Then 4 is
extended from J to the larger space by continuity. So to find the relations of
infinite-dimensional Gaussian laws, it helps to be able to recognize Hilbert-
Schmidt operators in specific Hilbert spaces. From L*(p) to L*(») they are
just given by L?*(u X ») integral kernels. For later work on singularity,
equivalence, and Radon-Nikodym densities, see e.g. Shepp [53] and the book
under review.

Prediction. A stationary Gaussian process X (¢, -) gives a one-parameter
unitary group U,: X(f) > X(¢ + h), acting on the Hilbert space(s) of the
process. There is then a finite measure p on R, called the spectral measure,
such that there is a linear isometry of L*(R, p) into L%, P) taking (x — e’*)
to X(¢). Prediction and filtering of such processes are concerned with the
closed linear spans X, of {X(¢): t € A} for subsets 4; or equivalently, with
spans of {e"*: ¢t € A} in LR, p): a matter of harmonic analysis. Classical
prediction theory takes A = [— o0, s]. Dym and McKean [14] treat this and
other cases.

The review. Ibragimov and Rozanov’s book actually treats three topics on
stationary Gaussian processes (cf. also [30]): 1) singularity and equivalence,
and calculation of densities (Radon-Nikodym derivatives) in case of equiva-
lence; 2) in prediction, to find spectral measures p for which X is “regular” or
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“completely nondeterministic” in the sense that N ,X,_, _,; = {0}, and to
study “mixing rates” for such processes; 3) in statistics, to estimate the mean
J(®) of a process X(¢, -) + f(¢) (“filtering”, cf. [35]). The list of references at
the end of the book contains 28 items, mostly standard textbooks in analysis;
23 papers are cited in footnotes scattered through the volume.

Bits. Electrical engineering and information theory have, since Wiener’s
fruitful intermediation, been in contact with Gaussian processes; recently
flourishing related work is surveyed in [S] (level crossings), [35] (filtering), and
[57).

A goodly number of functional limit theorems give Gaussian processes as
limits—but that’s another story.

Reviews and bibliography. So far, authors of books and surveys have not
tried to encompass the whole subject. Neveu [46] gave what is still the largest
Gaussian bibliography, as far as I know, with some 600 items. Jain [33] and
Marcus [41] gave courses. Each annual index of Mathematical Reviews
currently lists between 50 and 100 papers on Gaussian processes (60G15). Of
the 57 references below, 20 are themselves surveys or monographs, many of
which have extensive bibliographies.
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Foundations of mechanics, Second Edition, Revised and enlarged, by Ralph
Abraham and Jerrold E. Marsden, The Benjamin/Cummings Publishing
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1. This excellent book is one of several superb books on mechanics which
have appeared in the past decade, such as those of Souriau [10], Siegel-Moser
[9], Arnold [2] and Thirring [13], indicating a revitalized interest in the
venerable subject of classical mechanics. Actually, there have been at least
three sources of revitalization in the past forty years. The first came from the
solution of the “small divisor problem” in celestial mechanics. The
breakthrough here was achieved by Siegel in a mathematical tour de force,
and then a new powerful general principle was discovered by Kolmogorov
and developed in the hands of Arnold and Moser into a major analytical tool.
The second came from the study of geometric properties of mappings and
flows, especially in their “generic” behavior. The guiding philosophy had
come from the foundational work in differential topology of Whitney and
Thom, and was developed by Smale, Anosov, Sinai and their schools. More
recently, there has been an influx of new ideas coming from group theory,
from the work of Kirilov and Kostant in representation theory, and of
Souriau, in rethinking the physical and geometrical principles underlying
mechanics. As the bulk of the material added in the second edition deals with
this last topic, I will concentrate my attention on it.

Much, but not enough, has been written about the philosophical problems



