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Exactly thirty years ago, when I was about to develop a serious interest in 
some numerical aspects of partial differential equations, two well-known 
mathematicians gave me the benefit of their deeper insights in the form of 
two predictions. "Digital computing machines will never successfully compete 
with analog computers. Their vaunted speed is no use, since they break down 
all the time" was one prediction. "The role of functional analysis in the 
theory of partial differential equations will always remain mostly decorative. 
The important ideas can equally well be expressed in the language of 
traditional analysis" was the second statement. The quaintness of those 
utterances in retrospect from 1979 came vividly to my mind when I was 
reading this book by R. Ansorge. Such a thorough and detailed investigation 
into the nature of finite difference methods would not now be considered a 
worthwhile effort if the first prediction had been right; and the book would 
not begin-as it does-with two sections entitled Function-analytic formulation 
of initial value problems and The concept of a generalized solution, if the 
language and methods of Functional Analysis had not, by now, deeply 
penetrated all work on partial differential equations. 

There have been other widespread, more specific, predictions concerning 
trends in the numerical analysis of partial differential equations which would 
have pushed finite difference methods into the background, if they were true. 
One was that, as the available error estimates for these methods were, by 
necessity, always statements on the orders of magnitude only, rather than 
explicit realistic inequalities, they would be increasingly regarded as unreli­
able and worthless. Another one was the expectation that techniques of the 
Galerkin type, i.e., approximations in suitably constructed finite dimensional 
subspaces, such as those furnished by the finite element method would 
completely supersede the less flexible "old-fashioned" procedure of replacing 
derivatives by difference quotients in a grid. 

For initial value problems, at least, as distinguished from boundary value 
problems, it is, however, still true that difference approximations are of 
paramount computational interest. 

In the early history of this subject the name of Lewis F. Richardson stands 
out [5]. His grandiose scheme of an enormous staff of pencil pushing human 
computers numerous enough to solve with adequate accuracy the hyperbolic 
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system of differential equations that governs the atmospheric flow of air was, 
of course, overly optimistic, as far as the mathematical difficulties were 
concerned and, at the same time, not imaginative enough to include the idea 
of machines each capable of replacing the arithmetic of millions of human 
beings. 

As far as theory is concerned, Richardson was essentially satisfied with 
verification of the property now called consistency. This means that if Fu = 0 
is the differential equation and Fh is a corresponding finite difference opera­
tor in a grid of meshlength h, then limA_ 0̂{Fv — Fhv} = 0 for all functions v 
in a sufficiently smooth class. The study of the convergence of the solution of 
the difference equation problem to that of the underlying differential equa­
tion problem was taken up a few years later. The most important contribution 
is in the paper [1] by Courant, Friedrichs and Lewy. Among other seminal 
ideas it contains the discovery that consistency does not always imply 
convergence for problems of evolution type: Certain inequalities between the 
time mesh length At = k and the space mesh àx = h have to be maintained 
in the passage to the limit, as h -^ 0. 

The third milestone in the history of the subject was J. v. Neumann's 
observation that certain procedures in which convergence, as explained 
above, is present are, nevertheless, practically useless, because they are not 
computationally stable. Convergence is a property of the exact solution of the 
finite difference problem. In practice, all computations have to be rounded 
off, however, and these "errors" often grow from one time step to another in 
an uncontrollable, frequently exponential manner. Such procedures are called 
computationally unstable [2], [6]. 

The relation between convergence and stability has been-and, as Ansorge's 
book shows, still is-an intriguing subject. A paper by Lax and Richtmyer [3] 
on this matter has been so important and influential that it deserves special 
mention as the fourth decisive step in the development of the subject. In 
particular it is the first contribution in which the reliance on functional 
analysis is more than decorative: Banach's "Theorem on uniform bounded-
ness" is the main tool in the proof of a theorem to the effect that in the 
framework of properly chosen, quite natural definitions of these concepts 
convergence and stability are equivalent. 

After the preceding historical sketch the contents of Ansorge's book can be 
described concisely: It explores the interrelation of the three concepts of 
consistency, convergence and stability in their dependence on the type of 
differential equation considered and on the particular way these three terms 
are defined. 

The author is very systematic in the pursuit of his aim. Since the answers 
depend sensitively on the class of functions admitted and (less sensitively) on 
the metric in which the accuracy is measured, the above mentioned introduc­
tory sections on functiontheoretical formulations of the problems make 
possible a concise descriptive style. Without such a brief, precise terminology 
and a corresponding notation, the author's juxtaposition of no less than nine 
concepts of convergence would be hopelessly confusing. As it is, careful 
attention as well as good memory for definitions and symbols are demanded 
of the reader. 
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As every mathematician who has worked in this field well knows, one of its 
annoying, though superficial, difficulties is to find a notation that is not so 
complex as to obfuscate basically simple sequences of ideas. The author's 
struggle with this problem has been only partly successful. Some pages that 
are filled from top to bottom with lengthy formulas abounding in sub- and 
superscripts are rather discouraging. The unpleasantness is compounded by 
the fact that the book is in photooffset from a typescript rather than in 
ordinary print. On the other hand, the explanations are almost throughout 
careful and precise. One helpful feature is the presence of many supplemen­
tary explanatory remarks, which catch the eye, because they are printed in 
italics. 

The author's main emphasis is the extension of methods based on the paper 
by Lax and Richtmyer to nonlinear problems. As the book progresses from 
linear problems to semilinear, quasilinear and completely nonlinear ones the 
statements of the theorems become, of necessity, more complicated, the 
hypotheses more restrictive and the proofs more involved. The formulations 
are, however, so general that they often also apply to integro-differential 
equations and problems that possess solutions only in a generalized sense. 
Surprisingly, the distinction between parabolic and hyperbolic problems 
appears hardly ever explicitly. Only a careful analysis of the hypotheses may 
reveal that they are sometimes satisfied for one type, but not for the other. 

The large number of examples is very helpful. They are selected so as to 
illustrate a theoretical point as simply as possible rather than situations one is 
most likely to meet in computational applications. 

In summary, this is a book for a theoretical numerical analyst, rather than 
for an applied scientist who wants to find quickly a good computational 
procedure for a practical problem at hand. The emphasis is on the structural 
relations between the continuous problem and the discrete ones that can be 
associated with it. The book collects the recent results in this direction from 
the widely scattered literature and presents them competently in a unified 
systematic way without making the mistake of aiming at a compendium of 
the subject. 
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