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It is a commonplace that many of the phenomena arising in pure and 
applied analysis can be described directly or indirectly by continuous linear 
operators acting on infinite-dimensional complex Banach spaces. One need 
only recall, for example, the Fourier-Plancherel transformation, or integral 
operators, or the subject of group representations. We shall call a continuous 
linear mapping of a complex Banach space into itself an operator (or a 
bounded operator). One of the most powerful tools for linking the algebraic 
behavior of an operator T on X with its spatial action is the spectrum of T, 
o(T), defined to be the set of all complex numbers X such that (X — T) fails 
to be invertible in the algebra of all operators on X. In the general setting the 
spectrum plays a role analogous to that of the set of eigenvalues in the 
finite-dimensional case, and is a nonvoid compact set. Moreover, because the 
resolvent function (À — T)~l is an analytic function of X on the complement 
of o(T), Cauchy's integral formula can be used to define ƒ(T) whenever ƒ is a 
complex-valued function analytic on a neighborhood of o(T). This is the 
"functional calculus" of T and illustrates one benefit of spectral theory-the 
infusion of the machinery of complex analysis into general operator theory. 
More broadly, spectral theory (the analysis of operators by way of their 
spectra) seeks to facilitate the study of operators through scalar considera­
tions. Here are some further examples. The spectral theorem for a normal 
operator N on a Hilbert space H (i.e., N*N = NN*) asserts the existence of a 
measure E(-) on the Borel sets of o(N) having self adjoint projections on H 
for its values and such that, among other things, N = ƒ XE(dX). In the 
infinite-dimensional setting, a close analogy with finite-dimensional operators 
is provided by compact operators (operators mapping bounded sets onto sets 
with compact closure). Compact operators, including many integral opera­
tors, have a spectral theory which reflects their kinship with finite-dimen­
sional operators. For instance every nonzero point in the spectrum of a 
compact operator is an eigenvalue with finite-dimensional eigenmanifold, and 
the spectrum is countable with no accumulation point except possibly the 
origin. Spectral theory is an extensive subject which blends with all aspects of 
operator theory, and the foregoing brief discussion is intended only to 
indicate some of its flavor. 

Dowson's Spectral theory of linear operators enables readers with a basic 
understanding of Banach spaces to learn the spectral theory of bounded 
Banach spaces operators from the ground up, and to reach the frontiers of 
knowledge for three important classes of operators with a rich spectral theory 
(the Riesz, prespectral, and well-bounded operators). This is accomplished by 
careful organization of the material and an overview of the machinery of 
spectral theory; tne tenor of the book is decidedly toward unification and 
cohesion of concepts. The book is divided into five main parts, which are, in 
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order of presentation: general spectral theory, Riesz operators, hermitian 
operators, prespectral operators, and well-bounded operators. Each part ends 
with a section of extensive notes and comments. The text of the first part 
consists of one chapter on the basics of spectral theory, including the spectral 
radius formula, subdivisions of the spectrum, the functional calculus, 
idempotents, spectral sets, the minimal equation theorem, and ascent and 
descent. 

Part two begins with a chapter on compact operators, treated both for their 
own sake and as a prelude to Riesz operators. After attending to the basic 
structure theory, the treatment of compact operators moves on to the 
Hilden-Lomonosov "ping pong" proof that a nonzero compact operator on 
an infinite-dimensional Banach space has a proper hyperinvariant subspace. 
This sets the stage for taking up Ringrose's theory of superdiagonal forms for 
compact operators, in which "simple" nests of invariant subspaces can be 
used to obtain a type of multiplicity theory for compact operators-in analogy 
with superdiagonal forms for operators on finite-dimensional spaces. The text 
of Part 2 concludes with a chapter on Riesz operators, whose spectral theory 
is like that of compact operators. Various characterizations of Riesz operators 
are given. The following one illustrates the parallel with compact operators: 
an operator is a Riesz operator if and only if every nonzero point of its 
spectrum is a pole of its resolvent operator, and the spectral projection 
corresponding to each nonzero point in its spectrum has finite-dimensional 
range. The Riesz operators on a Banach space X can also be described as the 
operators whose image in the Calkin algebra of X is quasinilpotent. T. T. 
West's characterization of the Riesz operators on a Hubert space is shown. 
This states that every Riesz operator on a Hubert space is a compact 
perturbation of a quasinilpotent, and makes use of an appropriate "super-
diagonalization process." It is an open question whether West's characteriza­
tion is valid for the Riesz operators on an arbitrary Banach space. 

The text of Part 3 consists of a brief chapter concerning hermitian opera­
tors on Banach spaces. A bounded operator T on a complex Banach space X 
is called hermitian provided its numerical range (in a certain appropriate 
sense) is real. Equivalently, T is hermitian if and only if the one-parameter 
group (continuous in the uniform operator topology) generated by iT consists 
of isometries of X. Such operators coincide with the usual selfadjoint ones in 
Hubert space, and, in the general Banach space setting, retain a limited, but 
nevertheless surprising, number of the pleasant properties of selfadjoint 
operators. For example the hermitian operators on a Banach space form a 
closed real linear manifold, the spectrum of a hermitian operator is real, and, 
though it is not at all apparent, the spectral radius and norm of a hermitian 
operator are equal. On the other hand, the square of a hermitian operator 
need not be hermitian, and the spectral theorem is not valid for hermitian 
operators in the general Banach space setting. These facts, among others, are 
taken up in Part 3, which neatly develops key results needed for applications 
to prespectral operators. The link between the hermitian and prespectral 
operators stems from the fact that a bounded Boolean algebra of projections 
can be made to consist of hermitians by a suitable equivalent renorming of 
the underlying Banach space. 
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Part 4, the largest part of the book, comprised of ten chapters, deals with 
prespectral operators. Let X be a Banach space, and T a total linear manifold 
in the dual space X*. A bounded operator T on X is called prespectral of class 
T provided there is a bounded, T-countably additive spectral measure £(•) on 
the Borel subsets of the complex plane (Whose values are projections on X) 
such that T commutes with all values of E(-), and for each Borel set 8 the 
restriction of T to E(8)X has spectrum contained in the closure of 8. E(>) is 
then called a resolution of the identity of class T for T. T is called a spectral 
operator provided the above holds with T = X*9 in which case E(-) is 
necessarily strongly countably additive. Early in the study of prespectral 
operators Fixman gave an example, reproduced in the book, which shows 
that a prespectral operator can have two distinct resolutions of the identity of 
different classes. For about twenty years it was not known whether a 
prespectral operator of class T had a unique resolution of the identity of class 
T. This was settled affirmatively by Dowson in 1973. A streamlined proof, 
using hermitian operators, is given near the beginning of Part 4, thereby 
freeing subsequent formulations of circumlocutions that were once necessary. 
It should perhaps be pointed out here that the adjoint of any prespectral 
operator on X is prespectral of class X, and the operator in the Fixman 
example is the adjoint of a spectral operator, but is not spectral. This 
illustrates the desirability of going beyond spectral operators to the study of 
prespectral operators. The next notion is a natural generalization of normal 
operator. A scalar-type operator of class T is a prespectral operator S of class 
T whose resolution of the identity E(-) of class T satisfies S = Ja(iS) \E(d\). 
An operator T is prespectral of class T if and only if T can be written 
T = S + N9 where S is scalar-type of class T and N is a quasinilpotent 
commuting with the resolution of the identity of class T for S. Thus, via the 
Jordan form, prespectral operators can be viewed as a generalization of 
operators on finite-dimensional spaces. The foregoing provides a glimpse at 
the early stages of Part 4, which covers a variety of topics too numerous to 
discuss here in detail. These topics include: the functional calculus for 
prespectral operators, the single-valued extension property, Boolean algebras 
of projections, spectral operators, logarithms of prespectral operators, com­
pact prespectral operators, point spectrum of a prespectral operator, and 
restrictions of spectral and prespectral operators. Two chapters in Part 4 deal 
with normal operators. The first of these develops the basic properties, and 
gives Whitley's neat and rapid proof of the spectral theorem for a normal 
operator. This proof is Banach-algebra-minded, but avoids Banach algebra 
theory. Rosenblum's elegant proof of Fugledé's theorem is presented after­
wards. The second chapter on normal operators centers on property (P) (a 
normal operator is said to have property (P) if each of its invariant subspaces 
is reducing). Among other things, Sarason's theorem that a normal operator is 
reflexive is shown here, and this leads to the theorem that a normal operator 
A has property (P) if and only if A* is in the weakly closed algebra generated 
by A and the identity operator. Part 4 includes a proof of Wermer's result 
that the sum and product of commuting spectral operators on a Hubert space 
are spectral, and presents McCarthy's example of two commuting scalar-type 
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spectral operators on a separable, reflexive Banach space whose sum and 
product both fail to be spectral. 

The last part of the book deals with well-bounded operators. For / = 
[a, b], a compact interval of the real line R, and ƒ a complex-valued function 
of bounded variation on / , let |||/||| = | f(b)\ + var(/, J). An operator T on a 
Banach space is said to be well bounded if there are a compact interval / and 
a constant K such that ||/>(r)|| < A"|||/i||| for every polynomial/? on / having 
complex coefficients (in particular, it follows that o(T) C J). To illustrate 
how such operators can arise, we mention Gillespie's work showing that if G 
is a locally compact abelian group, then the translation operators on LP(G), 
1 <p < oo, possess logarithms which are well-bounded operators multiplied 
by /. (This example is worked out in the last chapter.) Ringrose's "spectral 
theorem" for well-bounded operators is demonstrated. This theorem states 
that if T is an operator on a Banach space X, then well boundedness of T is 
equivalent to the existence of a compact interval [a, b] and a one-parameter 
family {E(t)}9 of projections on X* satisfying certain natural (but in part 
technically involved) requirements, with (Tx, y} = b(x, y} — 
ƒ*<*, E(t)y) dt for all x in X and y in X*. The family {E(t)} is called a 

decomposition of the identity for T, and need not be unique. Despite its formal 
similarity with the spectral theorem for selfadjoint operators (i.e., formally we 
integrate by parts in the latter), Ringrose's "spectral theorem" has a quite 
different proof (which is not short). The proof provides useful side-results 
including a necessary and sufficient condition for a well-bounded operator to 
have a unique decomposition of the identity. If T is well bounded on X, and 
there exists a family {F(t)}91 EL R, of projections on X such that {F(t)*} is a 
decomposition of the identity for T, then T is called decomposable in X. It is 
shown that in this case T has a unique decomposition of the identity, and 
hence the family {F(t)}9 t E R9 is unique. By requiring that F(-) be right 
continuous on R with respect to the strong operator topology we arrive at the 
definition of type (A) operator. If T is of type (A), and, at each real number, 
F(-) has a left-hand limit in the strong operator topology, then T is said to be 
of type (B). An operator T of type (A) has an operational calculus based on 
the left-continuous functions of bounded variation on some interval [a, b]; 
moreover, T = jb

a- t dF(t), where the integral exists as a strong limit of 
Riemann sums. An operator of type (B) has an operational calculus based on 
the functions of bounded variation. In addition to further properties of 
operators of types (A) and (B), the last part of the book also examines the 
relationships between well-bounded and prespectral operators on Hubert and 
Banach spaces (in particular, it is shown that the class of well-bounded 
operators on I2 is strictly larger than the class of scalar-type spectral operators 
on I2 with real spectrum). 

Being of moderate size, this book is not a comprehensive treatise on all 
aspects of spectral theory. There are certainly some advanced topics not 
covered (e.g., general multiplicity theory is only mentioned, the Brown-
Douglas-Fillmore results on essentially normal operators are absent). What 
the book does do is provide a fund of valuable up-to-date information, much 
of it not heretofore available in one place. It covers some important classes of 
operators which are not treated in any detail in the three volumes of Dunford 
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and Schwartz: Riesz operators, generalized hermitian operators, prespectral 
(as opposed to spectral) operators, and well-bounded operators. The exposi­
tion is well knit, and there are numerous examples. Dowson's book is a fine 
contribution to the literature, and should benefit both experts and novices. If 
there is any shortcoming, it would be the absence of exercises. 
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Bessel polynomials, by Emil Grosswald, Lecture Notes in Math., vol. 698, 
Springer-Verlag, Berlin-Heidelberg-New York, 1978, xiv + 182 pp., $9.80. 
Many mathematicians, of whom I am one, find orthogonal polynomials 

fascinating. I was introduced to the Legendre polynomials by O. D. Kellogg, 
in a course on potential theory, almost half a century ago. At the time, I was 
entranced more by their elegant formal properties than by their applications. 
Later, I encountered other orthogonal polynomials. One of the ways in which 
they arise is as eigenfunctions of differential equations, where the boundary 
condition is just that of being a polynomial, and so involving only finitely 
many parameters. Perhaps if high-speed computers had been invented earlier, 
the computational advantages of polynomial solutions would have seemed 
less compelling, but it is hard to imagine that the so-called classical polynomi­
als (Laguerre, Hermite, Jacobi-Legendre and Chebyshev are special cases) 
could have escaped notice for long. 

I expect (without having actually investigated their history) that all the 
named systems had been studied by predecessors of the mathematicians they 
are named for. The Bessel polynomials, however, are exceptional: they appear 
not to have been studied by Bessel (although they are related to Bessel 
functions), and were named by Krall and Frink [2] in 1949. They had, in fact, 
been more or less known at least since 1873, and had occurred in connection 
with the irrationality of TT, statistics, and the wave equation; and were 
introduced (independently) at about the same time in electrical engineering. 
Such an ubiquitous set of polynomials surely deserves not only a name but 
more than the casual mention it got in the Bateman Project volumes [1] in 
1953. 

The paper by Krall and Frink was actually the first systematic study of the 
Bessel polynomials; since objects of mathematical discourse, like continents, 
are so often named for those who popularize them rather than for those who 
discover them, it is only because of Krall and Frink's good taste that we do 
not now know these polynomials as the Krall-Frink polynomials. Some of the 
subsequent active research on Bessel polynomials seems to have been inspired 
by Krall and Frink's calling attention to the orthogonality of the poly-
nomials-in the complex plane rather than on the real intervals where the 
classical polynomials are orthogonal. 

Grosswald's bibliography lists 116 titles dealing with Bessel polynomials. 
The book is a quite detailed survey. It describes not only the analytic 
properties such as one finds for the classical orthogonal polynomials in 
Szegö's book [3], but also algebraic properties (irreducibility, the Galois 
group). Grosswald has also provided abstracts of many results that he could 


