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DISPLACEMENT RANKS OF A MATRIX1 

BY T. KAILATH, S.-Y. KUNG AND M. MORF 

The solution of many problems in physics and engineering reduces ultima­
tely to the solution of linear equations of the form Ra = m, where JR and m are 
given N x N and N x 1 matrices and a is to be determined. Here our concern 
is with the fact that it generally takes 0(N3) computations (one computation 
being the multiplication of two real numbers) to do this, and this might be a 
substantial burden if N is large or if the problem has to be repeated with differ­
ent R and m. For such reasons, one often seeks to impose more structure on 
the matrices R. In many problems we have an underlying stationarity or homo­
geneity (invariance under displacements in time or space) property that often 
leads to the matrix R being Toeplitz (i.e., with elements of the form /?j_y). Now 
it is known that Toeplitz matrices can be inverted with 0(N2) (or even 
0(N log2iV)) multiplications, which can be considerable simplification. However, 
even if the physical problem has an underlying stationarity property, it still hap­
pens that in the course of the analysis the coefficient matrix R turns out to be 
non-Toeplitz, though in some sense close to Toeplitz. For example R may be 
the inverse of a Toeplitz matrix, or the product of two rectangular Toeplitz ma­
trices (as arises often in least-squares theory), or an asymptotically Toeplitz ma­
trix (Ry —> Rt_j as i, ƒ —> °°). It seems unreasonable that equations with such 
non-Toeplitz matrices should require 0(N3) operations for their solution, but 
this question does not seem to have been systematically explored before. 

Motivated by a number of related results on the solution of certain non­
linear (Riccati- and Chandrasekhar-type) differential equations arising in some 
least-squares estimation problems ([l]-[3]), we have been able to provide some 
answers to the above question and also obtain some extensions. Roughly speak­
ing, with an N x N matrix R we are able to associate an integer a, 1 < a < N, 
that seems to provide a nice measure of how close R is to being Toeplitz; more­
over, we have shown that a matrix with index a can be inverted with (about) a 
times as much computations as required for a Toeplitz matrix. 

To make these statements more precise, we introduce two so-called dis­
placement ranks of a matrix. 
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DÉFINITION. The (±)-displacement ranks of an N x N matrix R are the 
smallest integers ot±(R) such that we can write 

* = ! ¥ / ( or*=Z UtLi 

for some lower-triangular Toeplitz matrices {Lf} (or { Lt}) and some upper-tri­
angular Toeplitz matrices {Ut} (or {Uf}). 

THEOREM 1. The (±ydisplacement rank of a matrix is equal to the (+)-
displacement rank of its inverse, le., a+(R) = a^RT"1) and a_(R) = a+CR""1). 

EXAMPLE. If T is a symmetric Toeplitz matrix, then the representations 

where T+ is the lower-triangular part of T, show that OL±(T) are not greater 
than 2, and we shall show presently that (unless T is diagonal or zero) ot+(T) = 
2 = OL.(T). Therefore according to the theorem we must have GLOT""1) = 2 = 
ot+(T~l), and in fact it is known (see, e.g., [5], [6]) that there exist lower-tri­
angular Toeplitz matrices A and B such that T~l = B'B - A'A. 

LEMMA 1. Alternative characterization of displacement ranks. The (±)-
displacement ranks can be computed as 

<x+(R) = rank{i? -ZRZ'}, OL(K) = mnk{R -Z'RZ}, 

where the prime denotes transpose and Z is the "lower-shift" matrix consisting 
of Y s along the first subdiagonal and zeros elsewhere. 

Writing out R - ZRZf and R - Z'RZ for 3 x 3 matrices will explain the 
reason for the name displacement rank and will also show that la+ - a_l < 2. 
It is also worthwhile to check that a±(7) = 2 by applying Lemma 1. Note also 
that the rank is 2 even under numerical perturbations in the elements, provided 
the Toeplitz structure is respected. Similar statements hold for representations 
as in (1). 

LEMMA 2. A functional equation. Given column vectors {xp yt}, the 
unique solution of 

R-zRz' = f¥; (2a) 

l 

is 

i 

where L(x) denotes a lower-triangular Toeplitz matrix whose first column is x 
(this completely specifies the matrix), and U(y') denotes an upper-triangular 
Toeplitz matrix whose first row is y\ [There is a similar result for R - Z'RZ.] 

(1) 



DISPLACEMENT RANKS OF A MATRIX 771 

Lemma 2, which is easy to check, can be used in a fairly obvious way to 
prove Lemma 1, which will now be used to prove Theorem 1. 

PROOF OF THEOREM 1. Let p{A } denote the rank of A. Then we note 
that since rank is unaffected by multiplication by a nonsingular matrix, 

^(R^) = p{Rr~l -Z'R-xZ} = p{(R7l - Z'R~lZ)R} = p{I - Z'R^ZR}. 

Now by a well-known matrix result that p{I -AB} = p{I - BA }, we can con­
tinue the above chain as 

ctjir1 ) = p {/ - ZRZ'RT1} ( 3 ) 

= p{<7- ZRZ'RT1^} = p{R-ZRZ'} = a+{R). 

A similar argument will establish that a+QC1) = aJR). D 

This simple proof shows that in fact the result of Theorem 1 is quite gen­
eral. Thus it depends very little on the nature of the entries of R, as long as 
they are such that the cited rank properties still hold. For example, the entries 
of R could be matrices themselves. It is also rather striking that the proof does 
not depend upon what the matrix Z actually is. We defined it above as a lower-
shift matrix because we wish to focus (see Theorem 2 below) on relations to 
Toeplitz matrices, which are (almost) invariant under a shift. But other em­
phases can be accommodated by choosing Z differently. For example, we could 
focus on relations to 'periodic' matrices by choosing Z as the 'unit circulant ma­
trix'; 'Hankel' matrices could be handled by forming R - ZRZ and R - Z'RZ'. 

The results can also be adapted to treat integral operators (see [4] ). [Here we 
only mention that the displacement rank of an integral operator with kernel 
K(t, s) can be defined as the smallest a such that we can write 

(3/3/ + b/dsMt, s) = 2? <t>i(t)Us)> 

for some {<j>i9 ^ } (compare with Lemma 1).] 
Lemma 2 shows that representations of the form (1) can be obtained with 

many choices of vectors {xt> yt} and many choices of a. The smallest possible 
value of a will be the rank of R - ZRZ\ but unless we have some a priori in­
formation on R, this rank may not be easy to determine by direct numerical 
evaluation. The result of Theorem 2 is helpful in this connection. 

THEOREM 2. Suppose that we have a representation ofR as 

R=±L(xi)U(y'i), (4) 
1 

not necessarily a minimal one (le., a > a+(R)). Suppose also that all the lead-

ing minors ofR are nonzero. Then there exists an algorithm for computing 
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R l in the form 
a (5) 

i 

with of the order ofN2a multiplications. 

The significance of this result is that in the actual applications, we might 
be satisfied with representations (4) that are "reasonable approximations" to JR. 
The reduction in computational effort gives us some flexibility in trying to find 
a 'good' solution by varying R or varying a. 

We may note also that the representation (5) for RTl allows us to write 
bilinear forms xfR~~1y as X^ (L(a^x)\L(p^y\ the significance being that (be­
cause L(b^) is Toeplitz) L(bt)y is just the convolution of bi and y. Therefore 
FFT techniques can be used to find L{b^)y in 0(N log N) operations [7] and 
consequently xRTly can be evaluated in 0(a N log N) operations as compared 
to 0(N2) for an arbitrary matrix R"1. 

The proof of Theorem 2 is constructive, and gives a recursive procedure 
for successively inverting the principal submatrices of R. In fact, it is a striking 
fact that the algorithm has the same 'form' as the Levinson-Trench-Szegö algo­
rithms (see, e.g., [6]) for inverting a Toeplitz matrix—only the dimensions of 
certain variables and the values of certain parameters are determined differently, 
in a way that depends on the actual form of the representation (1). These re­
sults and further extensions (e.g., to higher-order displacement ranks and to in­
tegral operators), and applications to the computation of least-squares predictors 
(conditional means) and likelihood ratios (Radon-Nikodym) derivatives for 
Gaussian processes will be described elsewhere. 

In connection with Theorem 2, Dr. D. Yun of IBM and a referee have 
noted that by judicious use of FFT ideas, Toeplitz equations can be solved with 
0(N log2iV) operations (cf. the HGCD algorithm in §8.9 of [7]). These results 
can also be suitably extended to matrices of the form (5), see e.g. [8]. 
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