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Hilbert's third problem, by Vladimir G. Boltianskiï (translated by Richard A. 
Silverman and introduced by Albert B. J. Novikoff), Scripta Series in 
Math., Wiley, New York, 1978, x + 228 pp., $19.95. 

1. Since the response to the title of this book is invariably "What is 
Hubert's third problem?", let us begin by considering the problem itself. 
Loosely speaking, it asks whether there is any way of deriving the formula for 
the volume of a tetrahedron without using calculus. Clearly there is no hope 
of avoiding all mention of limits in most questions of volume, for it is by 
appealing to a limit process that the very notion of volume is extended to any 
figure more general than a rectangular solid having rational edges. Analo­
gously, limits are needed to extend the concept of area beyond rectangles 
having rational sides. Hubert's problem acknowledges such fundamental 
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involvement with limit processes by taking as its point of departure the 
formula for the volume of an arbitrary rectangular solid. The plane analogue 
of his question is whether the formula for the area of a triangle can be derived 
without calculus when the formula for the area of a rectangle is assumed. 
Because a triangle can always be partitioned into three pieces which can be 
re-assembled to form a rectangle, the plane version of the problem is easily 
resolved in the affirmative. However, Hubert observed that no known deriva­
tion of the formula for the volume of a tetrahedron was able to negotiate the 
path beyond the formula for a rectangular solid without appealing to a limit 
process, and he inquired whether this was by choice or necessity. Just as 
plane polygons can be "triangulated", solid polyhedra can be decomposed 
into tetrahedra. Therefore the volume of a polyhedron reduces to the case of 
the tetrahedron, and Hubert's third problem is equivalent to the question of 
whether an elementary theory of the volume of polyhedra is possible. 

Hubert, however, did not pose his problem in such general terms. He was 
very specific. Clearly two polyhedra A and B have equal volumes if it is 
possible to decompose them into polyhedral pieces such that the parts of A 
are congruent piece-for-piece to the parts of B, that is, if they are equidecom-
posable. Similarly, the volumes of A and B are equal if there exists a set of 
polyhedra that can be applied to each of A and B to build up the same 
resulting figure, that is, if A and B are equicomplementable. The methods of 
equidecomposability and equicomplementability characterize the elementary 
methods of dealing with volume. Suspecting a negative answer to his ques­
tion, Hubert called specifically for 

the exhibition of two tetrahedra having equal bases and equal 
altitudes that can be shown to be nonequidecomposable and 
nonequicomplementable. 

In 1900, the very year in which Hubert's now famous 23 research problems 
were put forth, Max Dehn succeeded in confirming Hubert's suspicion. 
Central to his solution was the demonstration that a regular tetrahedron and 
a cube of equal volume are nonequidecomposable and nonequicomplement­
able. 

2. In Euclidean 3-space, then, two polyhedra can have the same volume 
without being either equidecomposable or equicomplementable. Thus the 
concepts of equality of volume, equidecomposability, and equicomplementa­
bility are not all equivalent. (However, in 1943, the equivalence of 
equidecomposability and equicomplementability was established by J.-P. Sy-
dler.) 

We would not have expected this result from an investigation of the 
Euclidean plane, where all three concepts are, in fact, equivalent. Here the 
Bolyai-Gerwien theorem asserts that polygons A and B of equal area are 
always equidecomposable. Possible restrictions on the motions that are 
needed or permitted in carrying the pieces of A to their destinations in B has 
become a question of major interest concerning the method of equidecompo-
sition (and equicomplementation). This constitutes a second theme which 
accompanies the initial problem (concerning the equivalence of the three 
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concepts under discussion) through changing contexts due to variations not 
only in dimension (from the plane to «-space, n = 3, 4, 5, . . . ) but in the 
underlying geometry (Euclidean, Lobachevskian, Riemannian, Archimedean, 
non-Archimedean). This second line of inquiry has led to some remarkable 
discoveries. For example, in the Euclidean plane a polygon A can always be 
decomposed into pieces none of which need to be flipped over (outside the 
plane) in covering an equal polygon B. Furthermore, there always exists a 
decomposition of A each piece of which can be put into its place in B either 
without any turning whatsoever or after being turned exactly halfway round 
in the plane. A necessary and sufficient condition has even been found for the 
existence of a decomposition of A for which each piece can be dropped into 
place in B without rotations of any kind (including flipping over). Boltianskiï 
tells this story so well that one is tempted to think that pioneer work in this 
field is so easy and straightforward that anyone can do it. 

Hilbert knew that the Archimedean character of Euclidean geometry was 
an essential requirement for the equivalence of equidecomposability and 
equality of area in the Euclidean plane. Before posing his problem, he had 
succeeded, by the following elegant argument, in exhibiting two non-
equidecomposable triangles of equal area in any non-Archimedean geometry. 
Let AB and AD be two segments on a ray R whose lengths e and ƒ, 
respectively, are such that ne > ƒ does not hold for any positive integer n. Let 
AC and DQ be segments of length e which are perpendicular to R. Then 
triangles ABC and ABQ, having the same base and equal altitudes, have the 
same area. 

FIGURE 1 

Now suppose these triangles are equidecomposable. By triangulating each 
polygon in the decomposition of AABC, and similarly triangulating the 
corresponding polygons in the decomposition of AABQ, we obtain a decom­
position in which every piece is a triangle. Now, each of the k triangles in the 
decomposition of AABC must have perimeter which does not exceed the 
perimeter of AABC itself. By the triangle inequality, we have BC <AC + 
AB = 2e, implying the perimeter of AABC < 4e. Therefore the total perime­
ter of all the triangles in the decomposition of AABC is < 4ek. However, for 
all k we have 4ek < ƒ, and, concerning AABQ, we have 

AQ + AB = AQ + QD > AD = ƒ, 

giving 
4ek <AQ + AB < perimeter of AABQ. 

Thus, no matter how the triangles of AABC are applied to AABQ, they do 
not possess enough total perimeter to cover even the boundary of AABQ. 
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3. The discoveries of the Swiss geometer Hugo Hadwiger in the 1950s 
brought a fresh approach and renewed interest to the elementary theory of 
area and volume. He and other scholars since then have succeeded in 
generalizing many of the results known for the plane. For example, in 
Euclidean 3-space, necessary and sufficient conditions have been found for 
two polyhedra of equal volume to be equidecomposable when there are no 
restrictions on the motions permitted (the Dehn-Sydler theorem, 1965), and 
when the motions are restricted as severely as to allow only translations 
(Hadwiger, 1968). If one is permitted to magnify or contract the individual 
pieces without changing their shapes, then any two polyhedra can be shown 
to be equidecomposable. In fact, if such changes in size are permitted in the 
plane, then, incredibly, any polygon A can be decomposed into pieces that 
can be made to cover any other polygon B (of whatever size and shape), 
where no piece is permitted to be rotated in any way whatsoever (Figure 2). 
Finally, let us note a remarkable inheritance of some of the polyhedra which 
are equidecomposable with a cube: 

FIGURE 2 

if a polyhedron that is equidecomposable with a cube can 
itself be decomposed into several congruent polyhedra, then 
each of these polyhedra is also equidecomposable with a 
cube. 

4. Such, then, are the kinds of things to be found in this book. Everything 
noted above, and much more, is proved in full detail with great care. The 
unhurried exposition is nothing if not lucid and thorough, and I would expect 
that a considerable number of secondary school mathematics students and 
teachers would find a good deal of the first half of the book (to p. 118) to be 
enjoyable reading at an appropriate level. The complete solution of Hubert's 
third problem is contained in this part of the book and it is truly an 
exceptionally clever and beautiful application of elementary algebraic geome­
try. It is remarkable that space is so amenable to algebraic analysis. 

The book begins with a 44-page treatment of the theory of area and volume 
from first principles. This is well done and, although mostly elementary, it 
goes so far as to discuss the role played by the axiom of choice and Hamel 
bases in establishing the independence of the axioms for area. Except for this 
passage, the advanced reader need only skim this first chapter. On the other 
hand, the beginning reader can skip this more sophisticated part without 
serious loss in continuity. 
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A second chapter of equal size is taken up with discoveries in the plane, 
and a 124-page final chapter carries the subject into 3-space and higher 
dimensions. Up to the end of the solution of Hubert's problem, the discussion 
is generally easy-going and elementary. Beyond this point, the arguments 
soon become longer, more complicated and sophisticated (from p. 130). 
While the author continues to explain everything in full detail, this part of the 
book demands much more drive and concentration and is clearly an object 
for serious study. However, the motivated reader will not go unrewarded. He 
will discover another instance of the unity of mathematics in the way several 
branches of abstract mathematics converge to solve a problem of the most 
concrete kind. For example, the 20-page proof of the Dehn-Sydler theorem is 
highly algebraic and draws not only from the now standard vector methods 
of modern geometry (Minkowski sums) but uses techniques and results from 
functional equations, group and ring theory, set theory, and linear algebra. As 
often observed in many quarters, it is impressive what mathematics can do 
when it pulls itself together. 

Later topics include an extension of a few of the results to spaces of higher 
dimension, notably 4 dimensions, and a brief discussion of connections with 
the modern subject known as the algebra of polyhedra. Although the volume 
constitutes a self-contained account of a topic which is now essentially 
complete, it concludes with a short list of unresolved questions. 

There are a few misprints, but few mistakes that the reader will not see 
through in a matter of moments. 

The subject is related to a surprising discovery made recently by Robert 
Connelly (Cornell University), who is working in this general area at the 
present time. In 1813, Cauchy proved that a convex polyhedron with rigid 
faces is itself a rigid solid, that is, even if it were hinged along every edge, its 
shape could not be altered without forcibly breaking the surface. Connelly 
produced a nonconvex rigid-faced polyhedron which, if considered to be 
hinged at its edges, can be moved continuously through a small range of 
shapes without distortion of any face. For a description of this polyhedron 
and instructions for constructing a model, see Robert Connelly, A flexible 
sphere, The Mathematical Intelligencer (Springer-Verlag), volume 1, number 
3, 1978. 

The interested reader might also be on the lookout for a forthcoming book 
by Irving Kaplansky on all 23 of Hilbert's Paris problems. 
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Mechanizing hypothesis formation. Mathematical foundations for a general 
theory, by P. Hajek and T. Havrânek, Universitext, Springer-Verlag, 
Berlin-Heidelberg-New York, 1978, xv + 396 pp., $24.00. 

I know of no book on statistics that has "Hypothesis formulation" in its 
index; nor is it in the indexes of Ralston and Meek [17], Mathematical 
Society of Japan [13], Polanyi [15], Winston [20], nor Boden [1]. But some-


