MAXIMAL FUNCTIONS: A PROOF OF A CONJECTURE OF A. ZYGMUND

BY ANTONIO CÓRDOBA

In \mathbb{R}^n let us consider the family B_n of parallelepipeds with sides parallel to the coordinate axes. We may ask for conditions upon the locally integrable function f in order that

$$\lim_{\substack{x \in R \in B_n \\ \text{diam}(R) \to 0}} \frac{1}{\mu\{R\}} \int_R f(y) \ d\mu(y) = f(x)$$

a.e. x., where $\mu =$ Lebesgue measure in \mathbb{R}^n .

In 1935 B. Jessen, J. Marcinkiewicz and A. Zygmund [1] showed that [*] holds so long as $f \in L(1 + (\log^+ L)^{n-1})(\mathbb{R}^n)$ locally. Furthermore this result is the best possible in the following sense: if $\psi(t)$ is an Orlicz's space defining function such that $\psi(t) = o(t(\log t)^{n-1})$, $t \to \infty$, then statement [*] is false for a typical L_{ψ} -function (typical in the sense of Baire's category). Of course the case n = 1 was known before as Lebesgue's Differentiation theorem.

The following natural problem was proposed by A. Zygmund: given a positive function Φ on \mathbb{R}^2 , monotonic on each variable separately, let us consider the differentiation basis B_{Φ} in \mathbb{R}^3 defined by the two parameters family of parallelepipeds whose sides are parallel to the rectangular coordinate axis and whose dimensions are given by $s \times t \times \Phi(s,t)$, s, t positive real numbers. For which locally integrable functions f is statement [*] true with respect to the family B_{Φ} ?

In general the differentiation properties of B_{Φ} must be, at least, not worse than B_3 , the basis of all parallelepipeds in \mathbf{R}^3 whose sides have the direction of the coordinate axes, and, of course, not better than B_2 . A. Zygmund conjectured after his 1935 paper that B_{Φ} behaves like B_2 . This conjecture is now a theorem with applications to a.e. convergence of Poisson Kernels associated to certain symmetric spaces.

THEOREM. (a) B_{Φ} differentiates integrals of functions which are locally in $L(1 + \log^+ L)(\mathbf{R}^3)$, that is

Received by the editors August 29, 1978.

AMS (MOS) subject classifications (1970). Primary 42A68, 42A92; Secondary 42A18,

$$\lim_{\substack{R \to x \\ R \in B_{\Phi}}} \frac{1}{\mu\{R\}} \int_{R} f(y) d\mu(y) = f(x), \quad a.e. \ x$$

so long as f is locally in $L(1 + \log^+ L)(R^3)$, where μ denotes Lebesgue measure in R^3 .

(b) The associated maximal function

$$M_{\Phi}f(x) = \sup_{\substack{x \in R \\ R \in B_{\Phi}}} \frac{1}{\mu\{R\}} \int_{R} |f(y)| d\mu(y)$$

satisfies the inequality

$$\mu\{M_{\Phi}f(x) > \alpha > 0\} \le C \int_{\mathbb{R}^3} \frac{|f(x)|}{\alpha} \left\{ 1 + \log^+ \frac{|f(x)|}{\alpha} \right\} d\mu(x)$$

for some universal constant $C < \infty$.

The proof is based on the following geometric argument:

COVERING LEMMA. Let B be a family of dyadic parallelepipeds in \mathbb{R}^3 satisfying the following monotonicity property: if R_1 , $R_2 \in B$ and the horizontal dimensions of R_1 are both strictly smaller than the corresponding dimensions of \mathbb{R}^2 , then the vertical dimension of R_1 must be not bigger than the vertical dimension of R_2 .

Then the family B satisfies the exponential type covering property, that is: Given $\{R_{\alpha}\} \subset B$ one can select a subfamily $\{R_t\} \subset \{R_{\alpha}\}$ such that,

(i) $\mu\{\bigcup R_{\alpha}\} \leq C\mu\{\bigcup R_{i}\},$

for some universal constant $C < \infty$.

APPLICATION. Consider

$$R^3 = \{X = \begin{pmatrix} x_1 & x_3 \\ x_3 & x_2 \end{pmatrix}$$
, real, symmetric, 2 × 2-matrices},

and the cone $\Gamma = \{X \in \mathbb{R}^3, \text{ positive definite}\}\$. Then $T_{\Gamma} = \text{tube over } \Gamma = \text{Siegel's upper half-space} = \{X + iY, Y \text{ positive definite}\}\$.

For each integrable function f in \mathbb{R}^3 we have the "Poisson integral",

$$u(X+iY)=P_{Y}*f(x), Y\in\Gamma,$$

where

$$P_Y(X) = C \left[\det Y \right]^{3/2} / \left| \det(X + iY) \right|^3$$

and we may ask the following question: for which functions f is it true that $u(X + iY) \rightarrow f(X)$, a.e. X, where $Y \rightarrow 0$?

It is a well-known fact that if $Y = cI = \begin{pmatrix} c & 0 \\ 0 & c \end{pmatrix} \rightarrow 0$, then $u(X + iY) \rightarrow f(X)$, a.e. X for integrable functions f. On the other hand if $Y \rightarrow 0$ without any restriction than a.e. convergence fails for every class $L^p(\mathbb{R}^3)$, $1 \leq p \leq \infty$.

Here we can settle the case

$$Y = \begin{pmatrix} y_1 & 0 \\ 0 & y_2 \end{pmatrix} \longrightarrow 0$$

because an easy computation shows that

$$Mf(X) = \operatorname{Sup}_{Y} |u(X + iY)|$$

where

$$Y = \begin{pmatrix} y_1 & 0 \\ 0 & y_2 \end{pmatrix}$$

is majorized, in a suitable sense, by $M_{\Phi}f$ with $\Phi(s,t)=(s\cdot t)^{\frac{1}{2}}$. Therefore we have convergence for $L(1+\log^+L)(\mathbf{R}^3)$ and, since $Mf\geqslant CM_{\Phi}f$ is also true for some c>0, $L(1+\log^+L)(\mathbf{R}^3)$ is the best class for which almost everywhere convergence holds.

REFERENCES

- 1. B. Jessen, J. Marcinkiewicz and A. Zygmund, Note on the differentiability of multiple integrals, Fund. Math. 25 (1935), 217-234.
 - 2. A. Córdoba, $s \times t \times \Phi(s, t)$, Institut Mittag-Leffler Report No. 9, 1978.
- 3. E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 34-54.

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08540

FACULTAD DE MATHEMATICAS, UNIVERSIDAD COMPLUTENSE, MADRID, SPAIN