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BOOK REVIEWS 
Abstract analytic function theory and Hardy algebras, by Klaus Barbey and 

Heinz König, Lectures Notes in Math., vol, 593, Springer-Verlag, Berlin, 
Heidelberg, New York, 1977, vii 4- 256 pp, 

The main purpose of this set of notes is to provide a format for a unified 
exposition of the research of Heinz König. The first chapter recounts some 
standard theorems about harmonic and holomorphic functions in the unit 
disc. These provide the background for what follows. The goal is to take each 
of these results and show that it is, to a greater or lesser degree, a special case 
of a general principle about algebras of functions. Of course this approach 
did not originate with the authors of this set of notes (nor do they claim that 
it does). Perhaps what distinguishes their work from the work of others is 
their success in avoiding, where possible, special assumptions on the algebras 
of functions (i.e. that they be Dirichlet algebras, etc.). 

The F. and M. Riesz theorem in one of its classical forms, says that if dp is 
a measure on the circle, T, and ƒ zn dp = 0, for n *= 0, 1, 2 , . , . , then dp is 
absolutely continuous with respect to Lebesgue measure dm. It was realized at 
some point that this conclusion would follow rather easily if it could be 
shown that if dp » h dm + dv is the Lebesgue decomposition of dp with 
respect to dm, then ƒ znh dm = 0, n = 0, 1 , . . . . In this form the F. and M. 
Riesz theorem becomes a statement about the Lebesgue decomposition of a 
measure on T that annihilates the algebra, A, of holomorphic polynomials. 
The authors9 version proceeds from this point of view; (X, 2) is a measurable 
space and A is a subalgebra of the algebra, B(X, 2), of bounded measurable 
functions on (X, 2). It is assumed that 1 E A. By 2(^4) is meant the set of 
nonzero complex homomorphisms, <p, of A for which there is a complex 
measure p E M(X, 2) such that <p(/) = ƒ ƒ dp for all ƒ E A; M(y>) is the set 
of all probability measures m E M(X, 2) such that <p(f) » i f dm, for all 
ƒ E A. (It is shown that M(<p) j£0.) Using the theory of "bands" of measures 
it is shown that if p E M(X9 2) then p « ju,, + JJ ,̂ where pt is absolutely 
continuous with respect to some element of M(<p) and pj is singular with 
respect to every element of M (ç>). The abstract F. and M. Riesz theorem says 
that if p annihilates A then the same is true of px and /A2. 

The decomposition of annihilating measures is extended further by 
introducing the notion of "Gleason part" into this context. By M{q>J is 
meant the set of measures on (X, 2) which are absolutely continuous with 
respect to some element of M(y). It is then shown that if <p, \p E 2(4), then 
either M(<pY= M(\py or M(<p)vnM(^)v= {0}. This establishes an equiva­
lence relation on 2(^4); the equivalence classes are called the Gleason parts of 
2(/4); the set of equivalence classes is denoted by T(A). It is then shown that 
if jut annihilates A then p « 2 / > e r w pP 4- ps, where each pP annihilates A and 
each pP is absolutely continuous with respect to some element of M(<p) where 
< f£P , and % is singular with respect to every element of M(<p) for every 
9 & 2(4). 
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This abstract F. and M. Riesz theorem is the first result on "abstract 
analytic function theory" presented in these notes. It sets the stage for much 
of what follows. The point is made that we are naturally led to focus our 
attention on a single m E M(<p) for some <p E 2(^4). This gives rise to the 
somewhat more general notion of a Hardy algebra. A Hardy algebra is a 
weak * closed subalgebra of L°°(dm) for some finite positive measure space 
(X, 2, dm). It is assumed that l 6 f l and that there is a nonzero complex 
homomorphism, <p, of H that is weak * continuous. There follow three 
chapters in the notes devoted to the theory of Hardy algebras. I will discuss 
some of the results briefly. 

Instead of the usual family of Hp spaces, a single function class, H#, is 
introduced. A function ƒ is said to belong to H* if there is a sequence {un}9 

un E ƒƒ, llwJIoo < 1, un -» 1 a.e., dm, and uj E /f, for all n. Now H Q H* 
and H* is an algebra. If this construction is carried out for H = if00, the 
algebra of bounded holomorphic functions in the unit disc, then H* will be 
the set of functions of the form u/v, where u9v E H°° and t; is outer. This is 
sometimes called the Smirnov class, or N+. In the general situation a theorem 
is proved giving necessary and sufficient conditions in order that a positive 
measurable function be the modulus of an invertible element of H#. A special 
case is the classical theorem that a positive Ll function on the circle is the 
modulus of an Hl function if and only if it has an integrable logarithm. There 
is also a chapter on conjugate functions. An abstract conjugation is defined 
and estimates of Kolmogoroff and M. Riesz type are proved. 

After the theory of Hardy algebras is developed there follow four chapters 
on special topics. I found the chapter on the Mooney-Havin theorem 
especially interesting. In the classical case, the theorem in question states that 
i f ^ E L ^ ^ a n d i f 

W",S3> fT
f(p»dm 

exists for every ƒ E H°° then there is a <p E Ll(T) such that \(f) = ƒ f(p dm. 
Specialized to the classical case the proof of Barbey and König goes like this. 
Using standard results one sees that there is a <p E L\dm) such that \(f) = 
f ftp dm + T ( / ) , where r is singular, i.e., there are sets En C T, such that 
En+X c En9 m(En)->0, and r(f) = r{fXE) for all f E L«> and all n. By 
replacing <p„ by <pn — <p we may assume that X itself is singular and the aim is 
to show that X(f) = 0 for all ƒ E H00. One finds h E H°° such that Re h > 
cn on En and cn -* oo as n -> oo. Now for every t > 0, 

\fXEJ(l + th)\<\\f\U(l + tcn) 

and so 

|X(//(l + rt))|< 11X1111/11/(1 + ^ ) . 

Letting n -> oo it follows that A(//(l + th)) = 0 for every / > 0. One would 
like to let t -> 0 and conclude that \(f) = 0. Now / / ( l + th) -» ƒ pointwise 
and boundedly, which isn't good enough since À is not absolutely continuous. 
Also it isn't necessarily the case that / / ( l + th) -> ƒ uniformly. However it is 
true that ƒ / ( ! + th) -» ƒ in a sense which is weaker than uniform convergence 
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but stronger than bounded pointwise convergence. A sequence fn E L00 is 
said to converge strictly to ƒ G L°° if fn -» ƒ pointwise and 2 | fn+l - fn\ E 
L00. Strict convergence is stronger than bounded pointwise convergence so 
any weak * closed subspace of L00 is closed under strict convergence. If 
S C L°° is a weak * closed subspace and A is a linear functional on S, A is 
called strictly continuous if whenever fn -*ƒ strictly then A(ƒ„) -» A(ƒ). It is 
clear that any linear functional A, where A(/) = f f<p dm with <p E L1 is 
strictly continuous. The proof of the Mooney-Havin theorem now follows 
from two key facts, (i) If {An} is a sequence of strictly continuous linear 
functional on a weak * closed subspace SQL00 and if A(f) = 
lim^^^ A(fn) exists for all ƒ E S then A is strictly continuous; (ii) if tn -»0, 
fn > 0, then//(l + /„h) -> ƒ strictly. 

There are many other topics covered in these notes that I have not 
mentioned. For example there is a chapter on imbedding analytic discs and a 
chapter on rational approximation. 

The material is well organized and carefully presented. Many of the proofs 
are extremely elegant. 

PATRICK AHERN 
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The theory of partitions, by George E. Andrews, in Encyclopedia of 
Mathematics and its Applications, volume 2, Addison-Wesley Publishing 
Company, Advanced Book Program, London, Amsterdam, Don Mills, 
Ontario, Sydney, and Tokyo, 1976, xiv + 255 pp., $19.50. 

The serious study of partitions probably started when Euler was asked how 
many ways fifty could be written as the sum of seven summands. From this 
modest beginning a beautiful field has grown up that has connections with a 
number of different areas of mathematics. 

Ferrers, in a letter to Sylvester, observed that it was possible to represent a 
partition by an array of dots. For example, 7 = 4 + 2 + 1 is represented by 

A large number of identities can be proved by suitably counting the dots in a 
Ferrers graph. One beautiful example is F. Franklin's proof of the following 
result of Euler. 

Let Pn(D, e) denote the number of partitions of n into an even number of 
distinct parts and Pn(D, o) the number of partitions of n into an odd number 
of distinct parts. Then 

f0, n^k(3k± l) /2, 
Pn(D,e)-Pn(D,o) = \ . 

nK } nK ) [ ( -1)*, * » * ( 3 * ± l ) / 2 , * - 0 , l , . . . . (1) 
This proof is given in Chapter 1 and anyone who is interested in seeing 

how mathematics can be done without having to introduce many definitions 


