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evident in research on group representations. Notions from homological 
algebra and algebraic Zf-theory have clarified many features of the modular 
theory, as well as the difficult integral representation theory, which deals with 
representations over various types of integral domains. Work goes on on all 
parts of the subject, and there is still a great deal to be discovered. 

Serre's book gives a fine introduction to representations for various 
audiences. It is divided in three parts. The first was originally an appendix to 
a book on quantum chemistry by Gaston Berthier and Josiane Serre. It gives 
an exposition of the basics of complex characters and representations, in a 
style suitable for nonspecialists. There are also a few remarks on the 
extension of the theory to compact groups. 

The second part is for a more sophisticated reader. It gives more detailed 
information on complex characters, and then proceeds to deeper topics. 
These come under two main headings. First, there is a discussion of induction 
theorems, which tell when characters of a group can be obtained in a natural 
way from characters of certain subgroups. Second, rationally questions in 
characteristic zero are considered. Thus, one sees what happens when the 
complex field is replaced by a subfield which may be too small to realize all 
the complex representations. 

The third part is an exposition of Brauer's modular theory. Here, categori­
cal notions (projective covers, Grothendicck groups) are used freely. The 
connection between complex, integral and modular representations is 
examined very elegantly, and the Fong-Swan Theorem on lifting modular 
characters of /̂ -solvable groups is obtained as an application. The Brauer 
characters are discussed briefly, but block theory is omitted altogether. 

Despite the brevity of the book and its omission of many topics, the 
specialist can profit greatly from reading it. As always with Serre, the 
exposition is clear and elegant, and the exercises contain a great deal of 
valuable information that is otherwise hard to find. Also, the discussion of 
rationality questions is by far the best available. The translation, by L. L. 
Scott, Jr., is excellent; the design and typography are up to Springer-Verlag's 
superb standards. Thus, although the book is no substitute for the ency­
clopedic works of Curtis and Reiner and of Dornhoff, it is highly recom­
mended for specialists and nonspecialists alike. 
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Applied and computational complex analysis. II, by Peter Henrici, Wiley, New 
York, London, Sydney, Toronto, 1977, ix + 662 pp., $32.50. 

What would you put into a text for a second course in complex analysis? I 
expect that most of us, faced with this decision, would follow Hille in 
accepting some material as canonical and pursue our personal interests for 
the rest. Hille's basic list consisted of analytic continuation, elliptic functions, 
entire and meromorphic functions, normal families, and conformai mapping, 
but was for a rather "pure" course. Suppose it is to be a course oriented 
toward applications, meaning applications outside of mathematics itself? One 
has to consider what the applicable parts of the subject are (now, not in some 
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imagined millennial future). Certainly residue theory and conformai mapping 
are applicable, and more of these is needed than was in the first course; 
asymptotic evaluation of integrals by steepest descents; complex inversion of 
Laplace transforms; probably Wiener-Hopf techniques or more generally the 
Riemann-Hilbert boundary value problem. From Hille's canonical list, be­
sides conformai mapping, elliptic functions probably count as applicable, and 
so do entire functions now that they have come into prominence in 
communication theory and optics. 

Henrici continues in the style of his first volume by offering rather different 
answers. His chapter headings are Infinite products, Ordinary differential 
equations, Integral transforms, Asymptotic methods, and Continued 
fractions. Of course entire functions are hiding in the chapter on infinite 
products, and again among the Laplace transforms; Laplace transforms are 
just one kind of integral transform, and asymptotic methods are as expected; 
but where are the other desiderata, and what are differential equations and 
continued fractions doing in this volume? Conformai mapping has been 
officially deferred to Volume 3 as a technique for solving partial differential 
equations; some of the other omitted topics are concealed under the very 
broad chapter headings. 

The separate chapters are effectively short books in themselves, and will be 
discussed as if they actually were separate. The chapter numbering continues 
from Volume 1, reviewed in Bull. Amer. Math. Soc. 81 (1975), 647-652. 

8. Infinite products. I suppose that every beginning mathematician, after 
being introduced to infinite series, asks, "what about infinite products?" Of 
course there are infinite products; they play a smaller role, perhaps because 
their theory can be reduced to the theory of series. There are, however, 
advantages to having a separate theory of products, because they are useful in 
several contexts. For example, a power scries is a natural generalization of a 
polynomial, but power series are notoriously uninformative about the zeros of 
their sums. The natural generalization of a polynomial written as a product of 
linear factors is an infinite product that displays the zeros (although the 
proper generalization is less straightforward than this remark might suggest). 

This chapter is short (only 74 pages), but it contains everything that a 
beginning student needs to know, and a great deal else that is not ordinarily 
thought of as textbook material. Henrici begins by showing us some of the 
famous products connected with partitions of integers. We return to more 
standard material with the gamma function, including a deduction of Stir­
ling's formula from the infinite product. Gamma functions lead to hyper-
geometric functions, and these are then pursued to the end of the chapter for 
their own sake; far enough to get some of the famous identities, as well as 
Pochhammcr's representation and Mellin-Barnes integrals, which illustrate 
some of the more sophisticated applications of contour integration. 

9. Ordinary differential equations. Given the title of the book as a whole, it 
is not surprising that this chapter is almost entirely about linear differential 
equations in the complex domain. The theory of these equations is one of the 
classics of analysis. The algorithmic method does not have much new to say 
here since the whole subject has always been a bunch of algorithms, not 
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always perfectly understood. Most mathematics majors, and certainly almost 
all students of applied mathematics, are familiar with the techniques of 
solving the equations by using formal series, but most textbook presentations 
are apt to leave the student somewhat mystified. The techniques seem to work 
in the real domain where differential equations usually live; why, the student 
wonders, are we to be interested in what is going on in the complex plane? 
One answer, of course, is that we cannot understand the rationale of the 
techniques if we stay in the real domain, any more than we can understand 
the convergence theory of power series by staying in the real domain. 

In this chapter everything is done with care, and systems of equations are 
treated by matrix methods, as is proper. Bessel functions and the confluent 
hypergeometric function make brief appearances; the role of Fuchs' 
conditions is made clear; then we meet Riemann's theory of the 
hypergeometric equation, complete with quadratic transformations; the whole 
theory of Legendre's equation drops out as a very special case. (One doubts, 
however, that a working physicist would appreciate being asked to go this 
route in order to be able to solve three-dimensional problems with spherical 
symmetry.) 

This is a clean treatment in modern language, and it seems clear that the 
material really does belong (where it is seldom seen nowadays) in a course on 
complex analysis. 

10. Integral transforms. The word "transforms" is, if one takes a very 
abstract position, simply a synonym for "function": to transform something 
is to use it as the argument of a function. Of course "integral transform" has 
special connotations, particularly in the present context: to form an integral 
transform one multiplies a given function by a "kernel" and integrates, thus 
producing a new function that has (one hopes) desirable properties. Henrici 
starts out with Laplace transforms (kernel e~z\ 0 < t < oo), from the very 
pragmatic point of view of wanting to solve nonhomogeneous linear 
differential equations with constant coefficients. To a considerable extent, the 
intrinsic charm of the material then takes over, and in the latter part of the 
chapter the differential equations recede into the background. 

The idea of using Laplace transforms to solve differential equations is like 
a more complicated version of using logarithms to do multiplication: we 
transform the problem into a more tractable one, and then transform the 
solution back. (In fact, one could present logarithmic multiplication explicitly 
as an example of the use of Laplace transforms.) The key observation, for 
differential equations, is that (d/dx)e~xt = - te~x\ which shows how a 
differential operator is going to be transformed into a polynomial. The same 
sort of thing can be done by symbolic (or operational) methods, but these 
involve dangers that for many years only really good scientists seemed able to 
avoid consistently. The Laplace transform provided a satisfactory and reliable 
translation of operational calculus; one might say that Heaviside was to 
operational methods what Napier was to logarithms (remember that the 
interpretation of logarithms as exponents came later). However, whereas 
logarithmic multiplication is dead (killed by the hand-held electronic calcula­
tor), the Laplace transform is very much alive, so much so that some 
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engineers seem to think with transforms in preference to the original 
functions. Of course the Laplace transform has other uses, but it is as a device 
for solving differential equations that it makes its appearance in this chapter. 
The theory is discussed fully but succinctly, and the discussion of solving 
differential equations extends to systems (often short-changed in textbooks as 
being too difficult); there is also a convenient glossary of the vocabulary of 
systems engineering: transfer functions and all that. Henrici introduces 
Fourier transforms primarily to get at the complex inversion for Laplace 
transforms, but he includes other applications of Fourier series and integrals, 
including the Poisson summation formula. Laplace integrals lead into Dirich-
let series and thence to a full proof of the prime number theorem (which 
appears to have little to do with either algorithms or applications, unless 
one accepts Wiener's dictum that the problem of the distribution of the 
primes is equivalent to a problem of analyzing black body radiation). 

Something quite unusual for a textbook follows: the Laplace transform for 
entire functions of exponential type and Pólya's theory of the indicator 
diagram, with extensions to functions of exponential type in an angle. There 
is a substantial section on the discrete Laplace transform, LF(s) =•= 
Tj2£)_0e~5m/ir(wj). (The special case rj ~ 1 is known to engineers as the 
z-transform.) If we write / =•= e~vs a discrete Laplace transform is nothing but 
the generating function for the sequence {îjF(mj)} (in the sense in which the 
term is used in number theory and probability; many writers use "generating 
function" in the extended sense of "Laplace transform"). Treating the 
discrete Laplace transform in the framework of Laplace transforms rather 
than that of power series presumably has advantages if you are already 
familiar with the Laplace transform in general; no doubt the principle could 
be pushed even further. Henrici uses it, among other things, to prove 
Carlson's theorem on functions that vanish on an arithmetic progression. The 
chapter ends with some notes on other integral transforms and some exam­
ples of partial differential equations solved by transforms. 

11. Asymptotic methods. An asymptotic method can mean any method for 
obtaining approximate representations of functions, but usually it refers to a 
representation that involves a parameter and becomes more useful as the 
parameter gets closer to a limit; Stirling's formula for the gamma function is 
an example. 

The most usual asymptotic representations use power series (generally in 
powers of 1/z, since traditionally one deals with a "large" parameter), but 
these are not the convergent power series of elementary work. These power 
series generally diverge at every point-but convergence isn't everything. 
Convergence says that the approximation by partial sums of order n can be 
made very good at a given z by taking n large enough (without specifying 
how large). On the other hand, for an asymptotic series the approximation 
generally deteriorates for a given z if n is large, but if n is held fixed and z 
gets large (the larger, the better), the approximation improves-not in the sense 
of a small difference between the function and its approximations, but in the 
sense that the ratio between the function and its approximations approaches 1 
as z -* oo. It is in this sense that one has to interpret the remark, attributed to 
a well-known physicist (I forget which one), "Fortunately this series diverges, 
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so we can use it." What he meant was that whereas convergent scries often 
converge so slowly as to be useless for numerical work, appropriate partial 
sums of a divergent (asymptotic) series can on occasion give very accurate 
approximations to a function associated with the series. A precise definition 
of what one should mean by an asymptotic power series was given by 
Poincaré; there are similar definitions for other series with similar properties. 

This chapter presents several topics. To begin with, asymptotic power series 
are applied to the solution of ordinary differential equations with singular 
points. Here we meet the Stokes phenomenon, sometimes described as "the 
discontinuity of arbitrary constants," which is that the form of the asymptotic 
representation of a solution will change discontinuously as we go from one 
sector of the complex plane to another, although the solution itself is perfectly 
well behaved. (One of the properties of convergent power series that 
asymptotic power series lack is the property of providing equally good 
approximations in all directions.) The Stokes phenonenon was hard for the 
formalists of the nineteenth century to swallow, and it still has some shock 
value. As one would expect, Henrici gives a lucid discussion of the method of 
steepest descent for integrals containing a large parameter; examples: gamma 
and beta functions, Bessel functions, hypergeometric functions. Less familiar 
examples of asymptotic representations include series with xn replaced by 
(z - k)n/n\, where (z)„ means z(z + 1) • • • (z + n — 1). The chapter ends 
with the Euler-Maclaurin formula and Romberg's algorithm for numerical 
evaluation of limits; the first is very old; the second, very modern. Some of 
this material is complex analysis only by courtesy, but it all fits together to 
provide a general survey (less detailed than one might wish for) of asymptotic 
representations. 

R. P. BOAS 

12. Continued fractions. With its 170 pages this is by far the longest chapter 
in the second volume. Nevertheless there is just barely enough material in it 
to whet one's appetite concerning the analytic theory of continued fractions. 
There is nothing encyclopedic about the treatment. The emphasis is on a 
leisurely style of exposition. Most of the results presented are classical but the 
way they are discussed usually differs from the standard approach and 
frequently opens up new vistas and relations to other topics. Sequences of 
Moebius transformations 

Tm{z) = txot2o • • • °/„(z), 

where 

tn(z) = aj (bn + z), 

are used to define continued fractions as triples <{#„}, {£„}, {r„(0)}>. 
Another approach is to define the approximants Tn(0) = An/Bn by means of 
the second order linear difference equations 

An = bnAn-\ + M n - 2 > Bn = bnBn-\ + anBn-2> 

A0 = 0, Ax = ax, B0 = 1 , Bx = bx. 

The former more geometric approach, though not unknown earlier, was 
pushed into the background by Pringsheim's and Perron's preference for the 
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development based on the difference equations. In recent years however the 
geometric approach has been chosen by most workers in the field. Henrici 
shares this preference. 

There are two major areas to which continued fractions have been applied. 
The number theoretic applications depend for the most part on the regular 
(or simple) expansion of irrational numbers x, 0 < x < 1 into infinite 
continued fractions. One defines 

x0(x) = x, xn{x) = l/(x - [*„- , (* ) ] ) , bn(x) =[xn(x)]9 

where [a] denotes the integral part of a. The regular continued fraction 
expansion of x is then 

Its sequence of approximants {ƒ>„(*)/?„(*)} always converges to x. More­
over p„(x)/qn(x) provides the best rational approximation to x in the sense 
that 

\bx- a\>\qn(x)x - pn(x)\, 

provided a and b are integers relatively prime to each other and 0 < b < 
qn(x). By means of continued fractions one can also prove that 

\x-p/q\<l/q2V5 (*) 

has infinitely many rational solutions/?/?, q =£ 0, (p, q) = 1. This is so since 
among any three consecutive approximants of the regular continued fraction 
expansion of x there is at least one satisfying the inequality (*). There are also 
results with a measure theoretic flavor. We give two samples. 

(a) For almost all x, 0 < x < 1, the sequence of elements {bn(x)} is 
unbounded. 

(b) For almost all x, 0 < x < 1, the inequality 

\x-p/q\< i /? 2 log? 
has an infinite number of solutions/?/?, q ¥" 0, (/?, q) = 1. 

The second and even richer area of applications is in complex variable 
theory. It is with this that the book under review is mainly concerned. Here 
the central problem is the expansion of holomorphic functions into various 
kinds of continued fractions. Since such functions always have Taylor series 
expansions the question arises: what can be gained by looking for continued 
fraction expansions. The answer is that: 

(a) The continued fraction may converge in a larger region than the Taylor 
series. (In particular the function in question may only be given by an 
asymptotic series, say at oo, while the corresponding continued fraction will 
converge in a region having oo on its boundary.) 

(>8) It may be easier to obtain information about the value behavior of the 
function from the continued fraction than from the Taylor series. 

(y) The continued fraction may converge faster and an adequate approxi­
mation may be easier to compute. 

Topics in which some or all of these considerations have played a role are: 
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Expansions of hypergeometric functions, Padé tables and the Stieltjes 
moment problem which is solved by obtaining a continued fraction expansion 
of a function defined by an integral transform. (Note how several of the 
topics from earlier chapters of the book are intertwined with the analytic 
theory of continued fractions.) 

An essential part of the analytic theory is an ongoing investigation of the 
convergence behavior of continued fractions. Particular emphasis has recently 
been placed on an analysis of truncation errors and speed of convergence as 
well as computational stability of various algorithms by means of which 
continued fractions can be evaluated. This is in part in response to the fact 
that modern computers can handle continued fractions with ease so that the 
subject has become of practical importance. 

Henrici gives a modern proof of the classical result of Worpitzky (1865) 
that \an\ < 1/4, /i > 1, is sufficient for the convergence of K(an/l). Indica­
tive of the progress that has been made since then is the result, obtained in 
1942, that for any a, - TT/2 < a < m/2 and any M > 0, 

\an\- Rc(ane-2ia) < 1/2 cos2 a, n > 1, 

together with \an\ < M, n > 1, is sufficient for the convergence of K(an/l). 
Convergence theory for continued fractions differs markedly from the 
situation for infinite series and products. In particular most convergence 
criteria are of the convergence region type (as in the case of the circular disk 
and parabolic regions mentioned above) and in the proofs important infor­
mation is obtained about the values taken on by the approximants. 

My co-reviewer suggests that inclusion of a chapter on continued fractions 
is unusual in a modern book on complex analysis. This is indeed the case. 
However, it was not always so. The books by Stern (1860), Stolz (1885), and 
Pringsheim (1921) all contained long sections on continued fractions. 

As far as notation is concerned the author goes very much his own way. 
Thus on the one hand he uses the European notation 

ax\ a2\ a3\ 

I * . 1*2 1*3 ' 

instead of 

a^ «2 «3 

bx + T2 + Ts + * * ' ' 

which is customary in this country. On the other hand he uses &(an/bn) (in 
analogy to 2 and II for series and products, respectively) instead of K(an/bn) 
(first suggested by Knopp, the K standing for Kettenbruch) which is quite 
widely used. 

As in many other mathematical disciplines colorless terms such as "regu­
lar", "normal", "associated", "corresponding", etc. are frequently used in the 
theory of continued fractions. In addition we have C-fractions, /-fractions, 
P-fractions, and T-fractions among others. Unless Bourbaki can be per­
suaded to write a treatise on our subject it is unlikely that there will be a 
change in our drab terminology soon. Henrici coins such new terms as RITZ 
and SITZ. Though an explanation is provided for the choice of these terms it 
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is hard to take it seriously. One is more likely to think of a certain Swiss 
hotelier and the German word for seat. Though these are colorful words they 
bear no relation to the concepts they represent. Extremes of brevity are 
reached in such statements as "After it has been established that G VF c ST 
and PSA « ST it is natural also to ask whether GVF « S77" (p. 596). 

Fully three quarters of the chapter are devoted to a discussion of RITZ 
fractions, that is regular C-fractions or continued fractions of the form 
K(anz/l). RITZ-fractions are soon specialized to the S-fractions of Stieltjes, 
here all an > 0, and z is replaced by 1/z, S-fractions are studied in their 
relation to positive symmetric functions, functions expressible as Stieltjes 
transforms Jo>d^{i)/{z + t), as well as to the moment problem. A sketch of 
the theory of Stieltjes integrals as well as inclusion of proofs of the Montel 
and Vitali theorems help in making the material accessible to readers of 
modest preparation. 

The computational aspects of the subject are always kept in mind. Not only 
are many examples considered and worked out, but also if there is a more 
constructive as well as a more existential approach to a topic, the former is 
usually chosen. It is thus not surprising that a good deal of emphasis is placed 
on the quotient-difference algorithm (treated in Chapter 7 in the first volume) 
which was introduced by Rutishauser in 1954. The q.-d. scheme can be used 
to compute the coefficients of the RITZ expansion of a formal power series. 
It is also used in giving a solution to the problem, proposed and solved by 
Hurwitz, of finding necessary and sufficient conditions for a polynomial with 
real coefficients to have all of its roots in R (w) < 0. (The problem can be 
solved by means of terminating RITZ fractions.) 

In conclusion the author must be congratulated on having written an 
eminently readable account of a series of interesting topics. This is a book 
one wants to browse in. 
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Convex analysis and measurable multi'functions, by C. Castaing and M. 
Valadier, Lecture Notes in Math., no. 580, Springer-Verlag, Berlin, 
Heidelberg, New York, 1977, vii + 278 pp., $11.00. 

A "multifunction" T from X to Y is simply a map from X into the set 
9(Y) of all subsets of Y. This has also been called a "correspondence", or a 
"multi-valued mapping" by other authors. Whatever the name, the concept is 
quite elementary, so much so that it is not clear at a glance that there is 
anything to be learned from it. For instance, it is a straightforward exercise in 
general topology to define continuity for compact-valued multifunctions from 
one metric space to another. The set %(Y) of all compact nonempty subsets 
of Y is endowed with the Hausdorff metric: 

S(Kl9 K2 ) = max! sup d(xx, K2), sup d(x2, Kx ) 1 
^*,e#, X2GK2 * 

and T should be continuous if and only if it is continuous as a map from X 


