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considered: Is every Hausdorff compactification of a Tychonoff space (a) a 
Wallman-type compactification? (b) a GA compactification (defined by 
DeGroot and Arts)? Since every Wallman-type compactification is a GA 
compactification, the questions are related. In a footnote the author mentions 
that (a) has supposedly been answered in the negative by Uljanov and 
Shapiro. Conditions are given for a superextension to be a regular super-
compact space, and hence a superextension of each dense subspace. 

The final chapter presents a summary of recent results on supercompact 
spaces which answer some of the questions posed in earlier chapters. 

The monograph concludes with an extensive bibliography and an author 
reference index as well as a subject index. For the topologist interested in 
extension theory, this book provides a good insight into current research in 
the area of supercompactness. The author has done an excellent job of 
bringing together diverse results which all contribute to the general theory of 
supercompactness, and should be extremely valuable to anyone contempla­
ting research in this area. 
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Selected mathematical papers of Axel Thue, edited by Trygve Nagell, Atle 
Selberg, Sigmund Selberg, and Knut Thalberg, Universitetsforlaget, Oslo, 
LVIV + 591 pp., $40.00. 

The present volume, edited by T. Nagell, A. Selberg, S. Selberg and K. 
Thalberg, contains Thue's papers in the theory of numbers and in mathe­
matical logic. Thue's papers on geometry and mechanics are not included, but 
there is a possibility that they will be collected in a later volume. 

The publication of these Selected Papers is a great service to the mathe­
matical community. Thue's name is known mostly for his theorem on 
diophantine approximation and on diophantine equations which appeared in 
1908/1909. The present selection of his work destroys the common myth 
(long held by the reviewer) that this was Thue's only important contribution. 

The volume contains a biography of Thue by Brun who knew Thue, there 
is an introduction to Thue's work in number theory by Siegel, and there is an 
article by Siegel which gives a deep analysis of Thue's work on approximation 
to algebraic numbers. These contributions almost preempt the task of the 
reviewer. 

Thue liked to work independently, and his papers require almost no 
prerequisites. It appears that Thue was not much influenced by Lie, Kronec-
ker and other great mathematicians with whom he had contact during his 
years of study in Leipzig and Berlin. His greatest work, on approximation to 
algebraic numbers, appeared in 1908/1909, when he was well in his forties, 
and when he had been away from the centers of mathematics for over a 
decade. There is an intriguing picture on a front page, with Thue gazing 
rather sadly into the distance. 

As Siegel points out (in his (1970) article which is reprinted here), Thue 
wrote nine papers about approximation to algebraic numbers, but only one 
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attracted wider attention. This paper (Thue, 1909) contains the famous result 
that if p is algebraic of degree d > 3, and if \i > \d + 1, then there are only 
finitely many rationals/>/# with 

\p-p/q\ <q~tA-
An easy consequence is that if ƒ(x, y) is a binary form of degree at least 3 
without multiple factors and if c ^ 0, then the diophantine equation 
(nowadays called the "Thue Equation") 

f(x>y) = c 

has at most finitely many solutions in rational integers JC, y. This latter result 
was already contained in Thue's (1908c) article, written in Norwegian. 
Landau called it the most important discovery in "elementary number 
theory" which he had witnessed during his lifetime. He also said ten years 
after its publication that already ten competent mathematicians had read 
Thue's paper. 

Suppose P(x) is a polynomial with rational integer coefficients of degree r 
having a zero of degree s at the algebraic number p. If |p - (p/q)\ < 1, then 
the Taylor expansion of P(x) at x «* p yields \P(p/q)\ < cx\(p/q) — p\s, 
with a constant c, depending only on P. On the other hand, if p/q is not a 
root of P, we have \P(p/q)\ > q~\ and combining this with the inequality 
above we obtain \p - (p/q)\ > c2q~r/s. By taking P to be the defining 
polynomial of p we obtain r * d (the degree of p), s * 1 and \p - (p/q)\ > 
c2(Idy which is a theorem of Liouville (1844). It is clear that always r/s > d, 
so that an improvement is not possible by this approach. 

Thue had the far reaching idea of replacing the polynomial above by a 
polynomial P(x9y) - yQ(x) - P(x) in two variables x,y. If this polynomial 
is of total degree at most r, then the number of possible coefficients of P(x), 
Q(x) is 2r + 1. Thue now wants P(x, p) to have a zero of high order s at 
x « p. A zero of order s amounts to s linear relations in the coefficients of 
P(x) and Q(x). Each of these relations has coefficients in the number field of 
degree d generated by p, and hence is equivalent to d linear equations with 
rational coefficients. So we have altogether sd equations with rational coef­
ficients, and if sd < 2r + 1, then there is a nonzero solution to our problem. 
So we may take r/s w\d, which accounts for Thue's improvement over 
Liouville's estimate. Thue uses the box principle to construct polynomials 
P(x), Q(x) whose coefficients are small. 

Before using the box principle, and again afterwards, Thue (1908a), 
(1908b), (1910c), (1919) was able to construct P(x), Q(x) explicitly in certain 
cases, in particular for p -= Vô .The polynomials obtained are 
hypergeometric, but only Siegel (1937) recognized them to be such. Siegel in 
his (1970) analysis of Thue's papers notes his surprise that Thue did not 
recognize the polynomials to be hypergeometric. Siegel then shows that 
Thue's explicit construction method applies precisely when the Thue equation 
is of the type (ax + py)d + (yx 4- 8yY « c (which includes the general cubic 
case), and he discovers the amazing fact that the number of solutions of such 
an equation is below a bound which depends on c and the degree d only. It 
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may be conjectured that this continues to hold for an arbitrary Thue 
equation. 

At this point it is appropriate to give a brief account of subsequent 
developments of Thue's work on approximation. Siegel, trying to understand 
Thue's paper, rewrote it, and in the process he replaced the polynomial 
yP(x) — Q(x) by a more general polynomial in two variables, which enabled 
him to weaken Thue's condition \L>\d + 1 to pt > 2Vd . (This was in 1917. 
Siegel ("Zur Einführung" of the present collection) gives an interesting 
account of how Schur treated his work unfairly, so that it appeared only in 
(1921a), (1921b). Siegel also says that he had difficulty understanding Thue's 
letters c, k, 0, <o, m, n9 a, s. In fact, Thue's papers are sometimes difficult to 
read, not in the least because often the reader does not know until the end 
where the investigation is leading to.) Finally Roth (1955) used polynomials 
in many variables and obtained the condition fi > 2, which earned him the 
1956 Field Prize. The inequality p > 2 is best possible, but it is conjectured 
that, say, \p - (p/q)\ > c3(p)(q2 log2 q)~l. On the other hand, it is unlikely 
that \p — (p/q)\ > c4(p)q~~2 if p is of degree d > 3, since this would imply 
that p has bounded partial denominators in its continued fraction. Schmidt 
(1970) generalized Roth's Theorem to simultaneous approximation. For 
example, he proved that if 1, p l 5 . . . , pn are real algebraic numbers which are 
linearly independent over the rationals, then for [i > n + 1 there are only 
finitely many rationals «-tuplespx/q,... ,pn/q with 

1 Pi Pn 1 
P»-T\ 

here jx > n + 1 is best possible. For further references see Schmidt (1971b). 
Siegel (1929) used his (1921) work to deduce his famous discovery that a 

diophantine equation in two variables of positive genus has at most finitely 
many solutions. Schmidt (1971a), (1972) applied his work on simultaneous 
approximation to classify norm form equations 9l(plxl + • • • + pnxn) = c in 
variables xx,..., xn which have infinitely many solutions. 

Thue needs two distinct rational approximations/?,/q^Pi/qi to substitute 
into his polynomial P(x, y). Consequently, a contradiction is obtained only if 
one has two very good rational approximations to p. Davenport (1968) and 
Schinzel (1967) gave explicit constants fx*(a) < d and c*(a) such that \p -
{p/4)\ > ?~/A* it q > c*, with one possible exception/?/#. But already Thue 
(1919) and Siegel (1937) proved that under suitable conditions, equations 
ax" — byn = c have at most one solution. If one knows a solution, then there 
is no other. Thue gives the example \x7 - 17y7| < 106, which has no solution 
with x > 14293. But in general, Thue's method and the subsequent de­
velopments of Siegel, Roth and Schmidt are ineffective, i.e. they do not 
permit to give bounds for the size of the solutions of inequalities or equations. 
Baker ((1966) and subsequent papers; in particular (1968)), in work which 
earned him the 1970 Field Prize, developed a method which is different from 
Thue's and more akin to that of Gelfond, and which does permit him to give 
explicit bounds for Thue's equation. Feldman (1971) utilized this method to 
show that without exception \p - (p/q)\ > q~^ if q > c\ where /x'(a) < d 
and c\a) are computable. Earlier Baker (1964) had used the approach via 
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hypergeometric functions to deal with the case axn - byn = c. For further 
references see Baker (1975). 

Most of the results quoted can be carried over to approximation in /?-adic 
fields or power series fields. See Mahler (1941), (1961). A new approach was 
initiated by Osgood (1973), (1975) in the power series case. Instead of 
polynomials in two or more variables, Osgood uses differential polynomials 
P(x, x\ . . . , x{m)) (where the derivative is with respect to t if expansions in / 
about infinity are used) to give computable bounds for approximation to 
algebraic functions. Schmidt (to appear) shows that if f(x9y) * c is a "Thue 
equation" of degree d > 5 whose coefficients are polynomials in t of degree 
< A, then the rational solutions x,y * u/w, v/w in reduced form have 
degree u, v, w < 89A. 

Another important result on approximation, but in a quite different 
direction, is contained in Thue's (1912b) paper. Thue shows that if a real 
number p > 1 has the property that pn =«= Tn + en (n « 1, 2 , . . . ) where T„ is 
a rational integer and where |ej < c0/k

n with k > 1, then p is algebraic. 
More then twenty five years later this theorem was rediscovered by Pisot 
(1938), and the above numbers p are now called Pisot-Vijayaraghavan 
numbers, although Thue has the priority. Thue points out that real algebraic 
integers p > 1 whose conjugates lie inside the unit circle have the property in 
question, and Pisot shows that every number p with the mentioned property is 
in fact an algebraic integer of this special type. Salem (1944) proved the set S 
of these numbers to be closed, and Siegel (1944) proved that the smallest 
element in S is the positive root 8 * 1.324 . . . of x3 - x - 1, and is isolated. 

As was pointed out, Thue often used the box principle. Sometimes he 
derived results which had already been obtained by similar methods by 
Dirichlet and by Minkowski. Thue (1902) obtained the fact, nowadays called 
the Thue Remainder Theorem, that given p > 1 and given a, b which are 
coprime to/?, there is an integer q > 0 such that 

aq - op + h9 bq = pp + k with 0 < h\ k2 < p; 

in other words, the remainders of aq, bq after division by/7 are less than Vp . 
Thue dealt with various diophantine equations. For instance, he used his 

(1908c) result on Thue equations to show (191 la) that the equation P(x,y) = 
Q (x, y) has only finitely many solutions if P, Q are forms of degrees p > q, 
p > 2, and to show (1917b) that ax2 + bx + c « dyn has only finitely many 
solutions if n > 2 and if b2 - 4ac is no square. (More general results were 
proved by Siegel in (1926) and (1929).) It seems that Thue was forever 
interested in the Fermât conjecture. See his doodle on Fermat's equation on a 
front page. He gives (1917a) a discussion along unusual lines of the cubic 
Fermât equation. For the general Fermât equation Thue (1911b) applies a 
method of descent, which has, however, not led to further progress. 

Fairly at the beginning of his career Thue established the geometric-
number theoretic result that the densest packing of equal disks in the plane is 
the hexagonal lattice packing. He first gave a rather sketchy discussion in 
(1892), and a different and more rigorous (still open to some objections) 
argument in (1910a). The analogous problem in three dimensions is still open; 
it is conjectured that the densest packing of balls is a certain lattice packing. 
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See Fejes Tóth (1953) and C. A. Rogers (1964). 
Thue's genius shows again in his papers on strings of symbols and on logic. 

Two of his papers on strings are devoted to the construction of strings of 
symbols belonging to a given finite set of symbols, which have no repetition. 
Call a string irreducible if no two equal symbols or two equal blocks of 
symbols are adjacent. Thue at the beginning of (1906) shows that if R is a 
finite irreducible string composed of the four symbols a, b9 c9 d and if R' is 
the string obtained from R by replacing a, b, c, d respectively by the blocks 
A ~ adbacbc, B = abdacbc, C = abadcbc, D = abacdbc, then R' is again 
irreducible. In this way, Thue is able to construct irreducible strings of 
arbitrary length. Later in the same paper Thue improves and extends this by 
constructing infinite irreducible strings of only three symbols a, b9 c. In his 
later paper (1912a) Thue redefines irreducibility of an infinite string of n 
symbols to mean that two equal symbols or two equal blocks of symbols 
should be separated by at least n - 2 symbols between them. When n « 2 
this is to mean that two equal blocks must not overlap, and for n » 3 it gives 
the irreducibility as defined earlier. Thue shows that for each n > 1 there is 
an irreducible doubly infinite string • • • a_2a_ya0a{a2 • • • composed of n 
symbols. For some modern questions on avoidable patterns in strings of 
symbols see Bean, Ehrenfeucht and McNulty (to appear). 

Of lasting importance is Thue's (1914) paper on transformations of strings 
of symbols by given rules. Suppose we are given a finite set of symbols 
a9b9..., k9 and we are given two series of finite blocks of these symbols, say 

A\9 A2, . . . , An, 

Bl9 Bl9 . . . , Bn. 

If P, Q are strings, Thue writes P ~ Q if Q can be obtained from P by 
replacing a block As which occurs in P by Bi9 or conversely by replacing a 
block Bé by As. Further he calls P, Q equivalent if there are strings C l 5 . . . , Q 
such that P ~ C„ C, ~ C 2 , . . . , C,_, ~ Ch C, ~ Q. The following question 
is posed by Thue and is called a big general question: To find a general 
method which allows one to decide, after a computable number of operations, 
whether two strings A and B are equivalent. In his earlier paper (1910b) he 
deals with an even more general question (involving a number of "concepts" 
and binary operations between elements of these concepts, and represented 
very nicely geometrically by "trees") and says: "Eine Lösung dieser Aufgabe 
im allgemeinsten Falie durf te vielleicht mit unüberwindlichen Schwierigkeiten 
verbunden sein." (A solution of this problem in the most general case might 
pose unsurmountable difficulties.) Thue was right! 

A list of symbols a, b,..., k together with "relations" A, » B{,..., An ~ 
Bn where Al9... ,An9 B}9..., Bn are finite blocks of symbols (they are 
"words") is nowadays called a Thue System. Such a system defines a 
semigroup in terms of generators a, b9..., k9 and of defining relations. The 
question of Thue (now called the Word Problem for Semigroups) is to decide 
whether two given words are equal. Post (1947) proved the far reaching result 
that there exists a Thue System of only two letters a9 b where this decision 
process is "recursively" unsolvable. Later Novikov (1955) and Boone (see 
Boone (1959)) showed that the word problem for groups is also unsolvable. 
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Questions of this type are now at the center of interest. Thue was far ahead of 
his time. 
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Moduln und Ringe, by Friedrich Kasch, B. G. Teubner, Stuttgart, 1977, 328 
pp., DM 52 

Even though the concept of a ring was not formulated until the beginning 
of this century, rings had already been studied in the nineteenth century in 
the special cases of rings of algebraic integers, polynomial rings, power series 
rings and finite dimensional algebras over the real and complex numbers. 
Modules over rings are generalizations of vector spaces over fields, and were 
first studied by Dedekind and Kronecker over rings of algebraic integers and 
polynomials rings, in particular, in the special case of ideals. 

The theory of rings and modules has in this century developed in various 

!(#2) etc. signifies the position in the present collection of papers. 
2We use the abbreviations K.V.S.S. for Kra. Vidensk, Selsk. Skrifter. I. Mat. Nat. Kl. 


