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WORD PROBLEMS 

BY TREVOR EVANS1 

Introduction. In studying fundamental groups of manifolds, Dehn [4] in 
1911 investigated some special cases of a problem which is now known as the 
word problem for groups. Let G be a group generated by a finite set of 
elements a, b, c , . . . . Each element in G is a product of these generators and 
their inverses, for example, a~xbacb~xc. We call such expressions 
w(a, b, c,... ) words in the generators. G is assumed to ge given by a finite 
set of equations or defining relations r(a, b, c,... ) = 1 which the generators 
satisfy. The question Dehn proposed was to find a uniform test or mechanical 
procedure (i.e. an algorithm) which enables us to decide whether w * 1 for an 
arbitrary word w(a, b, c , . . . ) in G. We say that the word problem is solvable 
for the group G if there is such an algorithm. 

A different version of the same kind of problem was posed by Thue a year 
or two later [35]. Consider an "abstract language" L having a finite alphabet 
0, 6, c , . . . . A word in L is a finite sequence of symbols from the alphabet, 
for example, baabecba. A language L (usually called a Thue system) is defined 
on the alphabet a, b, c,... by a dictionary, a finite set of pairs of words. If a 
word w is of the form usv, where u, v are words and s is a word which occurs 
in the dictionary paired with a word /, then we say that w can be transformed 
by the dictionary into the word utv and we write usv -» utv. If there is a finite 
sequence of transformations w -» • • • -» w' connecting two words w, w', then 
we say that w, w' are equivalent in L. Thue's problem, which we may call the 
word problem for the language L, asks for an algorithm for deciding whether 
two words in the language are equivalent. We say that the word problem is 
solvable for L if there is such an algorithm. 

These two problems are examples of the same general situation. We have 
an algebra & which is generated by elements a,b,c,.... The elements of the 
algebra are represented by expressions (words) involving the generators and 
the operations. The algebra satisfies certain axioms and is characterized by 
certain basic relations r = r' where the r, r' are words. We wish to find some 
effective test for deciding whether two words w(a, b, c,... ), w'(a, b, c , . . . ) 
represent the same element of the algebra, i.e. whether w * w' follows from 
the axioms and the relations r * r'. The question of the existence of such an 
algorithm is called the word problem for the algebra. Obviously the word 
problem for groups is of this type. The word problem for the language L 
becomes such a question if we view L as a semigroup given by generators 
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a,b,c9... with a defining relation r(a, b, c, . . . ) = r'(a, b, c,. . . ) for every 
(r, r') in the dictionary. 

Word problems arise naturally in the structure theory of algebras given by 
generators and relations. Groups are the obvious example. Similarly, in the 
development of a theory of nonassociative multiplicative systems given by 
generators and relations (Evans [8], [9]) word problems need to be solved. 
Whitman's solution of the word problem for free lattices [36] is an important 
tool in their study. The direct way to attack such problems is via normal 
forms, uniquely determined words which represent the equivalence classes of 
equal words (e.g. reduced words in free groups). This approach is common in 
many aspects of the structure theory of algebras and often great ingenuity is 
required in constructing such normal forms. There is an excellent account of 
this in P. Hall [18] and a comprehensive survey article by Bergman [1] 
describes numerous applications of a particular approach (the Diamond 
Lemma) to obtaining normal forms. A description of this aspect of the word 
problem is also given in Evans [12]. 

In one sense, a normal form theorem gives the most concrete and satisfying 
solution to a word problem. However, we want to look at algorithms and 
word problems from a different point of view. Are there purely algebraic 
properties which will allow us to construct an algorithm for solving the word 
problem? In §§2, 3 and 4 we give examples of such situations. If a finitely 
presented (f.p.) algebra has enough finite homomorphic images to enable any 
two elements to be finitely separated, then we can construct an algorithm for 
solving the word problem for that algebra. An embeddability property of 
partial algebras in a variety allows us to construct an algorithm for solving 
the word problem for f.p. algebras in the variety. A f.p. simple algebra has a 
solvable word problem. This last result is one aspect of a remarkable theorem 
for groups and semigroups recently proved by Boone and Higman [3] which 
would seem to be the first example of a purely algebraic property (being 
embeddable in a simple subgroup of a f.p. group) which is actually equivalent 
to the existence of an algorithm for solving the word problem. In §4 we 
explore some universal algebraic aspects of their theorem. For example, a 
finitely generated algebra has a solvable word problem if and only if it can be 
embedded in a finitely generated simple algebra whose defining relations are 
recursively enumerable. 

The study of word problems for their own sake, rather than as a tool in the 
structure theory of algebras, is a consequence of the profound work of 
Church, Markov, Post, Turing and others on the meaning which should be 
attached to the intuitive notion of algorithm. Without a precise definition of 
algorithm it makes no sense to say that a decision problem is unsolvable, i.e. 
that an algorithm for solving the problem does not exist. No such dilemma 
exists if the problem is solvable-we simply produce the algorithm. 

Post [33] in 1947 was the first to show the unsolvability of one of these 
algorithmic problems in algebra when he proved that the word problem for 
semigroups is unsolvable. Later Novikov [31] 1955, and Boone [2] 1959, 
showed that the word problem for groups is also unsolvable. Except for 
incidental remarks we will not deal with these deep results of unsolvability-as 
we remarked earlier, we are concerned with situations where the word 
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problem is solvable. Of course, word problems are only one example of 
decision problems in algebra. Dehn in 1911 also considered the conjugacy 
problem for groups, i.e. to decide whether two elements of a f.p. group are 
conjugate, and the isomorphism problem, i.e. to decide whether two f.p. groups 
are isomorphic. 

Although we have already used the term algorithm frequently, we have not 
attempted to define it but have treated it as synonymous with the informal 
notion of effective procedure (given by some finite set of unambiguous 
instructions). The notion will be left informal throughout our discussion, i.e. 
we assume Church's thesis, that if pressed to do so, we could describe our 
algorithms in the formal language of Turing machines or recursive function 
theory. We will also use the term recursively enumerable informally. This 
describes a subset of the natural numbers which is the range of a recursive or 
Turing-computable function, i.e. a function for which we have an algorithm 
for calculating its values. We will equate recursively enumerable subset of an 
explicitly enumerated countable set (such as the set of all words in an 
algebra) with the informal notion of a subset for which we have an effective 
precedure for generating its elements. 

1. Some algebraic preliminaries. We will work within a finitely presented 
variety of algebras. By an algebra & =•= (A, Î2) we mean a nonempty set A and 
a finite set 2 of finitary operations f:An-*A9n = l,2,39..., each rt-ary 
operation being a mapping of A n into A. Examples of algebras which we will 
use are (i) groupoids, having one binary operation x-y, (ii) groups, having 
one binary operation x-y and one unary operation x~\ (iii) rings, having 
two binary operations x • y, x + y and one unary operation — JC, (iv) lattices 
having two binary operations x\/y, x /\y, (v) quasigroups having three 
binary operations x -y9 x \y, x/y. In the above examples, we have used the 
usual infix notation for the values of the operations. However, for a general 
algebra with an unspecified set of finitary operations, we will use ordinary 
functional notation and write f(xl9 x2,..., xn) for the value of the n-ary 
operation ƒ at (xl9 JC2, . . . , xn). 

By a variety (or equationally defined class) of algebras V, we mean the class 
of all algebras having some specified set of operations ti and such that these 
operations satisfy some specified set of axioms, each of which is in the form 
of an identity, i.e. a universally quantified equation u(xv x2, x3,... ) =•= 
v(xl9 x2> x3,... ) involving the operations and variables. An algebra & * 
(A, £2) is in V if the identities of V are satisfied by the operations and 
elements of &. We will only concern ourselves with finitely presented varieties 
where the operations are finite in number and finitary in scope and where the 
defining identities are also finite in number. The reader may keep in mind, as 
examples, the varieties of groups, semigroups, abelian groups, rings, 
commutative rings, lattices, modular lattices, quasigroups, loops and 
groupoids. 

In a variety V we can describe algebras in terms of generators 
£i> fo #3> • • • and relations r, = r\, r2 = r2, r3 = r'3,. . . . In such a V-algebra 
&, an element is represented by an expression built up from gl9 g2, g3,... 
and the operations of V, i.e. a word in the generators. The rv r\ in the defining 
identities of # are words in the generators gl9 g2, g3,.... The defining 
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identities of V are equations u(xl9 x2, x 3 , . . . ) = v(xx, x2, x3,... ). where the 
M, v are words in variables xl9 x2, JC3, . . . . The elements of ($, are equivalence 
classes of words in the generators where two words w(gv g2,g3, . . . ), 
w'(gl9 g2, g 3 , . . . ) are equivalent if there is a finite sequence of substitutions 
(using the identities of V and the relations of ($,) which transforms w into w'. 

As a simple example, consider the variety V of groupoids defined by the 
identities x = x2 and x • xy = y9 for all x,y. Let & be the V-algebra genera­
ted by a, b with defining relations ba — ab- 6. We have 

{ab • ba){bb • (6 • oa)) -> (oft • (o6 • 6))(66 • (ft • aa)) 

-> 6(6* • (6 • aa)) -> 6(6 • (6 • ad)) 

-+ b • aa ̂ > ba -* ab • b. 
Hence, (ab • ba\bb • (6 • aa)) = a6 • 6 in &. 

There is another way to approach equality of words in an algebra. If S is a 
group presented in terms of generators gx, g2, g3,... and relations r, * 1, 
r2 = 1, r3 = 1 , . . . , we may regard § as the quotient of the free group 3F on 
£i> &> &» • • • by the normal subgroup 91 generated by r„ r2, r 3 , . . . . Then 
w = 1 in § if w lies in this normal subgroup. This approach makes it clear 
that, for a f.p. group, we can actually describe an effective procedure for 
listing all equations w = 1 which hold in §. In other words, the set of all 
words w such that w = 1 holds in % is a recursively enumerable subset of the 
set of all words in S*. 

In general, let & be a f.p. algebra in a variety V, with generators 
gi, g2, g3,... and defining relations rx = /*',, r2 = r2, r3 = r3,.... Let us 
denote by V* the variety of all algebras of the same operation type as V, i.e. 
having the same operations as V but defined by the empty set of identities. 
Let 3F be the free algebra in V* generated by gl9 g2, g3, & can be 
regarded as the quotient algebra %/0 where 0 is the congruence on $ 
generated by all pairs (r„ r/) and all instances (w, v) of the defining identities 
of V (where arbitrary words in gl9 g2, g3,... replace the variables). We can 
give an effective procedure for generating 9. That is, there is an algorithm for 
listing all equations w = W which hold in & ; the subset of all (w,, H>/) such 
that w#. = w/ in & is a recursively enumerable subset of the set of all pairs of 
words in 5". 

The word problem for the algebra & is the question of the existence of an 
algorithm for deciding whether w = W in & for an arbitrary pair of words w, 
w' in the generators of 6B. The word problem is solvable for & if there is such 
an algorithm, unsolvable otherwise. 

We will use the following technique for solving the word problem several 
times. We have seen that we can effectively generate all equations which hold 
in the f.p. algebra &. Thus, if w = W in 6B, this equation will appear in this 
enumeration after a finite number of steps. Suppose that we have also some 
effective way of listing all inequations w ^ w ' which are true in (£. If we 
combine these two procedures, enumerating the equations and the 
inequations, then for any pair of words w, w', after a finite number of steps 
either w ^ w ' o r w ^ w ' will appear. Hence, we have an algorithm for solving 
the word problem for &. Of course, this is nothing more than the equivalence 
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of the properties of a subset S of the natural numbers (i) S and its 
complement S" are recursively enumerable, (ii) S is recursive (a subset is 
recursive if there is an algorithm for deciding whether a number belongs to it). 

We will use in the last section the notion of a recursively presented algebra 
&. By this we mean that the generators are either finite or countably infinite 
(labelled by the natural numbers, say) and that the defining relations form a 
recursively enumerable set. We note that in a recursively presented algebra & 
the set of all equations w — w' holding in & is also recursively enumerable. 

To conclude this survey of basic ideas, we mention a number of other 
decision problems in the theory of varieties of algebras. 

1. Let (3, be a f.p. V-algebra. Is there an algorithm for deciding for an 
arbitrary element x in & and f .g. subalgebra %, whether x E % ? This is 
called the generalized word problem for &. 

2. Is there an algorithm for deciding whether two f.p. V-algebras are 
isomorphic? This is the isomorphism problem for V. 

3. Is there an algorithm for deciding whether a f.p. V-algebra is free? 
4. Is there an algorithm for deciding, for an «-generator free V-algebra, 

whether a set of n elements is a free generating set? 
There are, of course, decision problems not involving algebras given by 

generators and relations which occur naturally in the context of varieties; e.g. 
can we decide whether two finite V-algebras satisfy the same identities? 
(solvable, Kalicki [20]); can we decide whether the identities of a finite 
V-algebra are finitely based? (unknown, even for the variety of groupoids); 
can we decide whether a finite V-algebra is equationally complete? (solvable, 
Scott [34]); can we decide whether a variety contains any non trivial finite 
algebras? (unsolvable, McKenzie [27]). 

2. Finite quotients and the word problem. Let & be a f.p. algebra in a variety 
V such that, for any elements x ^= y in 6£, there is a homomorphism a: 
& -» ® onto a finite algebra such that xa ^ y a in %. In other words, any 
pair of distinct elements in & can be "finitely separated." & is then said to be 
residually finite. This property allows us to construct an algorithm for solving 
the word problem for &. (See Evans [10], although Malcev [25] was 
apparently the first to note this. Dyson [5] considered this procedure for the 
case of groups.) 

THEOREM. A f.p. residually finite algebra has a solvable word problem. 

PROOF. Let â be a f.p. algebra in a f.p. variety V and let u(gl9 g2, g^ . . . ), 
t>(g„ g2> • • • > &) te t w o w o rds *n the generators of &. There is an effective 
enumeration of all equations r(g{9 g2, g 3 , . . . ) = s(gl9 g2, £ 3 , . . . ) which 
follow from the defining relations of &. For example, we may imagine this 
done by a machine M, which systematically lists all pairs of words (w, w') in 
the congruence on F„(V*) which is generated by the defining identities of V 
and the defining relations of &. If u = v 'holds in &, then this equation will 
eventually be produced by Af,. 

Now assume that & is residually finite. We may imagine a second machine 
M2 which systematically constructs all finite algebras in V and computes for 
each one all homomorphisms of & into it. If u =£ v in 6R, then because of the 
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residual finiteness of S, in one of these homomorphisms the images u and v 
will be distinct. Combining the two machines, we see that after a finite 
number of steps either machine M, stops because u = v has appeared in its 
enumeration, or machine M2 stops because it has found a finite homomorphic 
image of & which separates u and v. In any case, the algorithm stops after a 
finite number of steps, giving an answer to the question: is u = v in é£? 

Since f.p. abelian groups, commutative semigroups (Malcev [25]), 
commutative rings (Orzech and Ribes [32]), nilpotent groups (Gruenberg 
[14]), commutative Moufang loops (Evans [11]) are residually finite, these 
algebras all have solvable word problems. Also f.p. lattices, loops, 
quasigroups (and algebras in various subvarieties of the variety of 
quasigroups) are residually finite (Evans [10]) but solvability of the word 
problem for these algebras is more appropriately discussed in the context of 
embedding partial algebras (§3). 

It is interesting to note that the above theorem fails (for groups) if finitely 
presented is replaced by f.g. recursively presented. Meskin [28] has given an 
example of such a group with an unsolvable word problem. 

Residual finiteness is only one of a number of finite separability properties 
which implies positive solutions to various decision problems. Let V be a 
variety and m a property of subsets of V-algebras, e.g. being finite, being a 
finitely generated subalgebra, etc. We say that an algebra & has the finite 
separability property with respect to IT if for any x in & and 7r-subset S of & 
such that x £ S, there is a homomorphism of é£ onto a finite algebra a: 
& -» ($,a such that xa & Sa. In other words, x and S can be finitely separated. 
We say that V has the finite separability property with respect to m if every 
finitely presented algebra in V has the property. If m is the property of being 
finite, this reduces to residual finiteness. If m is the property of being a finitely 
generated subalgebra, this is usually called simply finite separability. If V is 
the variety of groups and m is "being a conjugacy class," the property is 
usually called conjugacy separable. 

The proof that residual finiteness implies solvability of the word problem 
has the following generalization. Let m be a property of subsets of a f.p. 
algebra éE such that any 7r-subset can be generated in some effective manner 
and let & be finitely separable with respect to the property IT. Then there is an 
algorithm for deciding whether an element of & belongs to a 7r-subset of &. 
As a special case, we have the following theorem. 

THEOREM. If a f.p. algebra has the finite separability property, then the 
algebra has a solvable generalized word problem. 

There are a number of algebras to which this theorem applies. In [17], M. 
Hall showed that if % is a f.g. free group, % any f.g. subgroup and x an 
element of % not in OC, then there is a subgroup % of finite index in % which 
does not contain x but which includes %. Since % contains a normal 
subgroup of finite index it follows that f.g. free groups have the finite 
separability property. In [14], Gruenberg proved that f.g. nilpotent groups 
have this property (this is easy to show for f.g. abelian groups). Free 
semigroups have the finite separability property and other classes of 
semigroups with this property have been described by Golubov [15] and 
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Lesohin [23]. Rather surprisingly, free rings do not have the finite separability 
property. If ^ is the free ring on one generator x, then in any homomorphism 
of % onto a finite ring, the subring generated by 2x and x + 2x2 maps onto 
the image of 3\ Since x does not belong to the subring, it follows that x and 
the subring cannot be finitely separated. (This example is due to K. Mandel-
berg.) 

Using the property that any finite partial algebra can be embedded, one 
can show that f.p. loops, quasigroups, groupoids (and algebras in various 
subvarieties of these) have the finite separability property (Lindner and Evans 
[24]). In view of this, it is reasonable to conjecture that f.p. lattices have this 
property although this is not known even for free lattices. 

It does not seem to be known whether the generalized word problem is 
solvable for free rings but it is easy to construct an example (based on the one 
for groups by Mihailova [29]) of the direct sum of two free rings which has an 
unsolvable generalized word problem. Let <$ be the free ring on two genera­
tors x,y and let & * f © 3\ Let S =-= (x,y; r( * r/, i * 1, 2, 3 , . . . > be a 
f.p. semigroup on the generators x,y such that S has an unsolvable word 
problem and let S * be the subring of 91 generated by (x, x), (y, y) and 
(/-,., /•ƒ), i « 1, 2, 3, . . . . Then, for any pair of words u, v E S, (u, v) E S * if 
and only if u » t; in S. (We remark that the word problem is also unsolvable 
for f.p. rings-take the semigroup ring over Z of any semigroup with an 
unsolvable word problem.) 

If 3F is an w-generator free algebra in a variety V which is residually finite 
and has the finite separability property, then any set of n elements of *$ which 
maps onto a free generating set in every homomorphism of S7 onto a finite 
relatively free V-algebra, is itself a free generating set for 3F (Lindner and 
Evans [24]). By the same argument as before we can prove the following. 

THEOREM. Let <% be an n-generator free V-algebra which is residually finite 
and has the finite separability property. Then there is an algorithm for deciding 
whether a set of n elements in <$ is a free generating set. 

Groups and loops satisfy the hypotheses of this theorem. So do groupoids, 
semigroups, lattices, although in these cases, it is trivial to obtain the 
conclusion directly. 

It would be interesting to know whether there is a test similar to that used 
in the above theorem for deciding whether a set of elements is part of a free 
generating set for a V-free algebra 5" and, in particular, if an element w of ^ 
maps onto a primitive element in every homomorphism of ®j onto a relatively 
free V-algebra, what finite separability conditions are needed on ^ to 
guarantee that w is then primitive in 9r. 

We conclude this section by mentioning what seems to be a very difficult 
problem. Let V be a variety in which f.p. algebras are residually finite 
(guaranteeing that they have plenty of finite homomorphic images). Are there 
further properties of V which will imply that a f.p. V-algebra is completely 
determined by its finite homomorphic images? I.e. given two nonisomorphic 
f.p. V-algebras, there is some finite homomorphic image of one which is not a 
homomorphic image of the other. This is the case for abelian groups but at 
present this is the only known example. Such a property implies a positive 
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solution to the isomorphism problem for V. We conjecture that for varieties 
with the embeddability property discussed in the next section (every finite 
partial algebra can be finitely embedded), this property of being "finitely 
determined" holds. 

3. Partial algebras and the word problem. Let V be a variety with operations 
S2 and let V* be the variety having the same set of operations £2 but defined 
by the empty set of identities. For example, if V is the variety of semigroups, 
then V* is the variety of groupoids. A partial Y^-algebra 9 » (P, Q) is a set 
of elements P in which each /z-ary operation of 2 is defined on a subset of Pn. 
By a partial V-algebra 9 we mean a partial V*-algebra (P, fi) which satisfies 
the defining identities of V, insofar as they can be applied to the partial 
operations of 9. In Figure 1 (i) we show the table for a partial algebra in the 
variety of groupoids defined by the identities x2 = x, xy = yx, and Figure 1 
(ii) shows the tables for a partial lattice. 

A 
a 
b 
c 
d 

a b e d 
a d c d 
d b d 
c c 
d d d 

V 

a 
b 
c 
d 

a b e d 
a a a 

b b 
a c a 
a b a d 

. 

a 
b 
c 

a b c 
a b 

b 
b c 

(0 (Ü) 
FIGURE 1 

An obvious question to ask for a variety V is whether a partial V-algebra can 
be completed to (embedded in) a V-algebra. By the embeddability problem for 
a variety V, we mean the problem of deciding, for an arbitrary finite partial 
V-algebra, whether or not it actually is part of some V-algebra, i.e. embed-
dable in a V-algebra. There is a close connection between this decision 
problem and the word problem (Evans [7]). In fact, they are equivalent. 

THEOREM. The embeddability problem is solvable for a variety V if and only if 
the word problem is solvable for V. 

The proof of this depends on two lemmas. 

(i) Given a fp. y-algebra & and two words w, v in the generators, we can 
construct an isomorphic f p. algebra % in which the generators and relations 
have the form of a partial \-algebra and u, v correspond to generators of $ in 
the isomorphism. 

(ii) If 9 is a finite partial \-algebra and we regard 9 as a presentation of a 
\-algebra <^P) in terms of generators and relations then 9 can be embedded in 
a \-algebra if and only if no two elements of 9 are equivalent in (9 >. 

A useful feature of this theorem lies in the fact that for some varieties any 
partial V-algebra can be embedded. In particular, this is true for the varieties 
of lattices and loops (Evans [6]), and for many varieties of quasigroups and 
groupoids which correspond to combinatorial designs-the embedding of a 
partial algebra in one of these varieties corresponds to the completion of a 
partial design (Lindner and Evans [24]). 
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We describe briefly the algorithm for solving the word problem for a f.p. 
algebra in a variety with the property that any finite partial V-algebra can be 
embedded in a V-algebra. Let & be generated by al9 a2,..., am with defining 
relations r, = r/, i — 1, 2 , . . . , n. Let wl9 w2 be two words in the generators of 
&. We wish to decide whether w, = w2 in &. 

We begin by introducing new generators b{, b2, b3,... for every word in 
the a,- which occurs as a subword of ri9 r\9 w, or n>2. This enables us to rewrite 
the defining relations of & so that each relation is either of the form b( » bj 
orf(bi9 bp bk, . . . ) * bt where ƒ is an operation of &. 

By applications of the identities of V and the defining relations of & we 
alternately remove redundant generators and introduce new relations of the 
form f(bi9 bp bk,... ) « br We arrive at a presentation for & which has the 
form of a partial V-algebra 9. In doing this, the bi9 bj corresponding to w„ w2 

may have been identified, in which case we know that n>, » w2 in é£. If, on 
the other hand, bi9 bj remain distinct in <?, since 9 can be isomorphically 
embedded in a V-algebra, then bt ^ bj in the V-algebra freely generated by 9 
and so wx =£ w2 in &. A more detailed account of this procedure is given in 
[6]. 

In many varieties, unfortunately, it is not true that every finite partial 
V-algebra can be embedded and so this algorithm cannot be applied. 
Conditions on a variety V which imply embeddability of finite partial 
V-algebras have been studied by Gluhov and Gvaramija (e.g. [16]). 

Are there varieties for which there is an algorithm for deciding embedda­
bility so that we can approach the word problem this way? For example, 
perhaps one can show that in a variety V, if any finite partial V-algebra can 
be embedded, then necessarily it can be embedded in a finite V-algebra. (Call 
this the finite embeddability property for V.) This leads to an algorithm for 
deciding embeddability but unfortunately it is only a different version of one 
we already know (by virtue of the following theorem). 

THEOREM (EVANS [10]). A variety has the finite embeddability property if and 
only if every f p. y-algebra is residually finite. 

Most varieties for which it is known that every finite partial algebra can be 
embedded have the further property of finite embeddability. The following 
table and chart summarize what is known about these properties for some 
standard varieties and illustrate the interconnections. We will use the 
abbreviations W.P. for "word problem solvable," E.P. for "embedding 
problem solvable," G.W.P. for "generalized word problem solvable," F.S.P. 
for "finite separability property," R.F. for "residual finiteness," LP. for 
"isomorphism problem solvable" and H.P. for "hopfian property." In 
addition, Ex will denote the property of a variety that every finite partial 
algebra is finitely embeddable, E2 the property that every finite partial 
algebra is embeddable, and E3 the finite embeddability property. Obviously, 
E\ A E2 <=» E3. Recall that an algebra is hopfian if it is not isomorphic to a 
proper quotient of itself. If the isomorphism problem is solvable for f.p. 
algebras in V and such algebras are hopfian, then we can decide whether an 
equation w — W holds in a V-algebra & by comparing for isomorphism & 
and £ u { w = w'}. 
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VARIETY 

J Groups 

j Rings 

Abelian groups 

Commutative rings 

Semigroups 

Commutative semigroups 

Lattices 

Modular lattices 

Loops, quasigroups 
! Steiner quasigroups 
1 Totally symmetric quasigroups 

Inverse property loops 

B, 

. * 
X 

X 

X 

X 

X 

V 
X 

V 

X 

E2 

X 

X 

X 

X 

X 

X 

V 
X 

V 

V 

The first entry in each column refers 

to free V-algebras; the second to j 

R. F. 

y/,X 

y/,X 

V,V 
>/.>/ 
y/,X 

V.V 

w t,x 

V,V 

?, ? 

f. p. V-algebras. 

W. P. 

sf,X 

V.x 
V,V 
V,V 
s/,X 

V,V 
vW 
t,x 

V,V 

V,V 

G. W. P. 

V,* 
%x 
V,V 
?, ? 

VCAT 

v,v 
? , * 

V,V 

V,V 

F. S. P. 

y/,X 

X,X 

v,v 
X, X 

y/,X 

V,V 
?, ? 

? ,J 

v,v 
9 ? 
* » « 

i. p. 

v.* 
V.* 
V,V 
V,? 
V,* 
V,? 
v.? 
V,? 

V,V 

V,V 

4. The word problem and simple algebras. Boone and Higman [3] have 
recently proved the remarkable result that a finitely generated group has a 
solvable word problem if and only if it can be embedded in a simple group 
which is in turn embcddable in a finitely presented group. In one direction, 
the Boone-Higman theorem is a variation and mild extension of the univer­
sal-algebraic result that a finitely presented simple algebra has a solvable 
word problem (Kuznccov [21]; see also Malcev [26, p. 209]). 

The Kuznccov theorem (for groups) goes as follows. Let G be a nontrivial 
f.p. simple group with generators gl9 g2,..., gn and let w be a word in the 
generators. Let w, = 1, u2 — 1, u3 = 1 , . . . be some effective enumeration of 
the consequences of the defining relations of G. If w = 1 in G, then w = 1 
will eventually appear in this enumeration. Let G* be the group obtained 
from G by adding the extra defining relation w = 1. Let v{ = 1, v2 — 1, 
Ü3 - I , . . . be some effective enumeration of the consequences of the 



WORD PROBLEMS 799 

defining relations of G*. Since G is simple, if w =5* 1 in G, then G* is trivial 
and so the equations gx = 1, g2 = 1 , . . . , gn » 1 will eventually appear in this 
second enumeration, We now perform these two enumerations alternately, 
step by step. Eventually, after a finite number of steps, either w =* 1 will 
appear or all of g, ~ 1, g2 « 1 , . . . , gn = 1 will appear. The algorithm stops 
when one of these occurs. 

Note that the above procedure describes an effective algorithm only when 
we know that the simple group is nontrivial. However, since a trivial group 
has a solvable word problem it is true that every f.p. simple group has a 
solvable word problem. In this theorem we may take G to be recursively 
rather than finitely related. 

The universal algebra version of the easy part of the Boone-Higman 
theorem is as follows (Evans, Mandelberg and Neff [13]): 

THEOREM, Let & be a subalgebra of a simple subalgebra % of a recursively 
presented algebra %. Then & has a solvable word problem. 

To prove the other half of the Boone-Higman theorem, the finitely generat­
ed group is first embedded in a recursively presented simple group which is 
then embedded in a finitely generated group and the concluding thrust of the 
proof is in the use of the deep result of Higman [19] that a finitely generated 
recursively related group can be embedded in a finitely presented group. A 
similar embedding result holds for semigroups (Murskii [30]) and using this 
Boone and Higman obtain the analogue for semigroups of their theorem for 
groups» 

We outline the procedure used by Boone and Higman. 
Let & « (A, Q) be a V-algebra. We construct a V-algebra &+ = (A+, Ü) 

with the following properties. 
(i) & is a subalgebra of ($,+, 
(ii) if 9 is any congruence on &* and there exists a pair of distinct elements 

a„ a2 in A satisfying ax s a2 (0), then x s y (9) for every pair of elements 
x,y, in A. 

(iii) if & is recursively presented and has a solvable word problem then &* 
is recursively presented and has a solvable word problem. 

If we define 8^ = &, &,+, « (£,)+, then the algebra % = U £ 0 #,• i s 

simple and contains &. 
It follows that % will also be recursively presented and have a solvable 

word problem. Hence, for any variety V for which we can carry out the 
construction from & to &* satisfying conditions (i), (ii), (iii) above, we have 
the following version of the Boone-Higman result. 

I. A recursively presented V-algebra & has a solvable word problem if and 
only if it can be embedded in a recursively presented simple V-algebra %. 

If the variety V has the further property 
(iv) any countable V-algebra can be effectively embedded in a finitely 

generated V-algebra, 
then we have a rather closer approximation to the Boone-Higman theorem. 

II. A recursively presented V-algebra has a solvable word problem if and 
only if it can be embedded in a simple V-algebra which can be embedded in a 
finitely generated recursively presented V-algebra. 
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In Evans, Mandelberg, Neff [13] this version of the Boone-Higman result is 
given for lattices, rings of characteristic p9 groupoids and loops. Of course 
such results miss the main flavour of the original result-algorithmic notions 
occur in both sides of the equivalence whereas the main impact of the 
Boone-Higman result is that a purely algorithmic property solvability of the 
word problem is shown to be equivalent to a purely algebraic property 
embeddability in a simple subgroup of a f.p. group. 

One cannot expect a complete analogue of the Boone-Higman theorem for 
familiar varieties of algebras other than perhaps rings which are algebras over 
Zp or Q. Although the word problem is solvable for f.p. abelian groups, 
commutative rings, and commutative semigroups, such algebras are not in 
general embeddable in simple algebras of the same type. Nor does embed­
dability of a ring in a simple ring have anything to do with whether it has a 
solvable word problem. 

Even if this stage of the Boone-Higman theorem can be carried through 
and the algebra embedded in a recursively presented simple algebra, the 
analogue of the second stage, embedding in a finitely presented algebra, it is 
not possible in many cases, for example, groupoids, loops, lattices, commuta­
tive rings and semigroups, abelian groups, nilpotent groups, and commutative 
Moufang loops. 

Our final theorem is an attempt at a Boone-Higman type theorem in 
universal algebra terms. However, it still retains the flaw that algorithmic 
notions appear on both sides of the equivalence. The main point of this 
theorem is that if we do not mind embedding in a recursively related algebra, 
then we may as well consider the whole problem in the context of varieties 
defined by the empty set of identities since an identity may be replaced by a 
recursive set of defining relations. 

Now let V be an arbitrary f.p. variety and let V* be the variety of all 
algebras of the similarity type of V. 

THEOREM. A finitely generated \T-algebra has a solvable word problem if and 
only if it can be embedded in a finitely generated simple \*-algebra which is 
recursively related. 

To prove this we note that by the Kuznecov theorem a f.g. simple 
recursively related algebra has a solvable word problem and so we only have 
to prove that if & is a f.g. V-algebra with a solvable word problem, then it can 
be embedded in f.g. recursively related simple V -̂algebra. We illustrate this 
for the case where V is a variety of groupoids i.e. having just one binary 
operation. Note that since & has a solvable word problem it has a recursively 
enumerable set of defining relations. We turn 6E into a V*-algebra by adding 
to the defining relations of & all equations we get from the defining identities 
of V by substituting words in the generators of & for the variables. & is now 
a f.g. recursively related V*-algebra. 

We now construct an algebra % having the generators and relations of & 
as part of its presentation. % has the further generators bl9 b2, cl9 c2, c 3 , . . . 
(disjoint from the generators of &). Let w„ w2, w 3 , . . . be some effective 
enumeration of all words in the generators of &. To define % we add further 
relations to those for &. Some of these such as b\ =* w{9 b\ =•= cl9 wxbx -= b29 
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b2ct = ci+x, bxcf = w /+1, i » 1, 2, 3 , . . . , guarantee that % is generated by bx. 
Others are chosen to ensure that % is simple. Among these relations: 
WfCj = bx if Wg » Wj in &, wtCj = b2 if wf. ^ MJin & for /,y = 1, 2, 3, 
Since the word problem is solvable in ($,, the sets of (i,j) such that w, * w, in 
éE and W; ¥= Wj in ($, are recursively enumerable and so the defining relations 
for % form a recursively enumerable set. 

The complete list of defining relations for & is given below. For i,j = 
1 2 3 

bxbx = H>„ bxb2 = 6„ c,^. = H>„ ftjw,. = 6„ 

626, = bx, b2b2 = c„ b2Cg = c /+1, 62w, = wi9 

cibx = c,ft2 = c,c, = c f^ = *„ cêCj = *2 if / T^y, 

I ft, if w,. = w in (Î, 

b2 üwi^wJm&. 

It follows that (i) % is finitely generated, (ii) % is simple, (iii) % is 
recursively presented. It only remains to show that & is isomorphically 
embedded in 9C. We do this by a normal form theorem solving the word 
problem for % (relative to its solution for &) and showing that wt = Wjr in % 
if and only if H>, = Wj in &. 

Since this paper was prepared my attention has been drawn to an 
announcement by Kuznecov [22] in which he states that a finitely presented 
algebra & has a solvable word problem if and only if & can be embedded in 
a finitely presented simple algebra % where "embedded" here means that the 
sets of elements of 6B, <35 are the same but the set of operations of & is a 
subset of the set of operations of %. Both & and ® lie in finitely presented 
varieties. No details of the proof are given. 

ADDED IN PROOF. 

(i) The statement in the introduction that the Boone-Higman theorem is the 
first example of a purely algebraic property which is equivalent to solvability 
of the word problem should be modified. The equally interesting theorem that 
a group has a solvable word problem if and only if it is embeddable in every 
algebraically closed group is due to B. H. Neumann, The isomorphism problem 
for algebraically closed groups, in Word Problems (North-Holland, 1973) and 
A. Macintyre, On algebraically closed groups, Ann. of Math. 96 (1972), 53-97. 

(ii) The theorem stated in §4 appears in An algebra has a solvable word 
problem if and only if it is embeddable in a simple algebra, Algebra Universalis 
(1978). 
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