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RAYS, WAVES AND ASYMPTOTICS1 

BY JOSEPH B. KELLER 

1. Introduction. In 1929 the American Mathematical Society established an 
annual lectureship named after Josiah Willard Gibbs (1839-1903), Professor 
of Mathematical Physics at Yale University from 1871 to 1903. Gibbs 
contributed essentially to the development of statistical mechanics and 
physical chemistry, and invented vector analysis. Therefore, it is appropriate 
that these lectures concern "mathematics or its applications" and "the 
contribution mathematics is making to present-day thinking and to modern 
civilization.** 

In this fiftieth Gibbs lecture, I will try to fulfill these objectives by 
describing some developments in the field of wave propagation. I hope that 
they will show also how mathematics itself is enriched by interaction with 
scientific and technical problems. In keeping with the intention that the 
lectures be "of a semipopular nature," I will omit as much technical detail as 
possible. 

At first I was especially pleased that this is the fiftieth Gibbs lecture, 
because 50 is so special in our number system. This is because it is the 
product of the number of fingers on one hand multiplied by the number of 
fingers on two hands. But from this point of view, 50 is not a dimensionless 
number, since it has the dimensions of (fingers per hand) squared. Therefore, 
its numerical value depends upon the choice of units, so it has no intrinsic 
significance. This is a reminder that it is only dimensionless numbers which 
we can regard as large or small, as in the asymptotic analysis I am going to 
discuss later. 

My plan is to begin with light rays and to describe their theory and use in 
optics. Then I will demonstrate some of their properties with the aid of a 
laser, kindly lent to me by Arthur Schawlow of Stanford University. Next, I 
will explain how rays were displaced by waves, which were introduced to 
provide a more accurate description of observed phenomena. The wave 
theory required solving certain partial differential equations, and numerous 
methods were devised to do this in special cases. However, in all other cases 
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728 J. B. KELLER 

this was a major difficulty. Ultimately rays, generalized in various ways, 
provided a method for solving such equations asymptotically. Thus, 
asymptotics provided the reconciliation of the ray and wave theories. Finally, 
I shall indicate the broader implications of this story for mathematics and for 
science in general. 

2. Rays. Rays were originally defined in Optics, the science of light, as the 
paths along which light travels. They were of three kinds, direct, reflected and 
refracted, characterized as follows (see Figure 1): 

T^\ 
(a) (b) (c) 

FIGURE 1. a. The direct ray from P to Q in a homogeneous medium is a straight line. 
b. A cross-section of the shadow showing the predicted bright spot on the axis. When this 

bright spot was observed by Aarago, Poisson became an ardent proponent of the wave theory. 
c. A ray from P in medium 1 is shown hitting the interface between media 1 and 2. The 

refracted ray in medium 2 is shown. The angle of refraction a2 is related to the angle of incidence 
<x, by Snell's law. 

1. A direct ray in a homogeneous medium is a straight line. 
2. A reflected ray is produced when a ray is incident upon a smooth 

surface. In a homogeneous medium it is also a straight line. The angle /J 
between the reflected ray and the normal to the surface is equal to the angle 
a, between the incident ray and the normal. Furthermore, the reflected ray 
lies in the plane determined by the normal and the incident ray, and is on the 
opposite side of the normal from the incident ray. 

3. A refracted ray is produced when a ray in one medium, say medium 1, is 
incident upon the interface between medium 1 and another medium, say 
medium 2. It lies in medium 2 and is a straight line if medium 2 is 
homogeneous. The refracted ray Ues on the opposite side of the normal from 
the incident ray, in the plane containing the incident ray and the normal. The 
angle a2 between the refracted ray and the normal is related to a x by Snell's 
law: 

sin a2/sin ax = nx/n2. 

Here ni9 the index of refraction of medium i, is a characteristic property of 
medium i (i «= 1, 2). It is a constant if medium i is homogeneous. 

These characterizations of the rays may be called the laws of propagation, 
reflection and refraction respectively. Euclid stated the first two of them, but 
omitted the coplanarity part of the law of reflection. This was first added by 
the Arabic scientist Alhazen in the tenth century. Snell's law was not 
discovered until 1626. Much earlier Ptolemy had stated that a2/ax = nx/n2, 
which is the form that Snell's law takes when ax and a2 are small. In 1637 
Descartes also published Snell's law, but it is not clear how he obtained 
it-perhaps by reading Snell's paper. 

These three laws are the basis of Geometrical Optics, the science of the 
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propagation of light, in piecewise homogeneous media. They suffice for the 
design and analysis of mirrors, lenses and other optical instruments. They 
also provide the foundation for the applications of Geometrical Optics, such 
as those published by Gauss in 1846. (At this point, rays, lenses, and light 
pipes were demonstrated.) 

3. The Principle of Least Time. Euclid knew that a straight line is the 
shortest path between two points. Therefore, he also knew that the direct ray 
between two points P and Q in a homogeneous medium is the shortest path 
from P to Q. Later Heron, an Alexandrian, showed that the shortest path 
from P to a plane boundary and then to Q consists of an incident ray from P 
to the boundary plus a reflected ray satisfying the law of reflection, from the 
boundary to g, provided that P and Q lie on the same side of the boundary. 

These two results were generalized by Fermât in 1661. He considered the 
line integral L of the index of refraction along any path from P to Q: 

L = I n ds. 
Jp 

Here ds denotes the element of arclength. Fermât stated that light travels 
from P to Q along that path which minimizes L. Now n is inversely 
proportional to the velocity of light so n ds is proportional to the time 
required for light to travel the distance ds. Therefore, L is proportional to the 
time required for light to travel along the path from P to Q. Consequently, 
Fermât called his characterization of rays the Principle of Least Time. 

This principle implies that in a homogeneous medium, the light path or 
direct ray from P to Q is a straight line. It also implies that in a homogeneous 
medium with a plane boundary, light follows a straight line from P to the 
boundary and another straight line from the boundary to Q, with the law of 
reflection obeyed. To obtain this conclusion, we must consider only paths 
with a point on the boundary, and then use Heron's result. Fermât also 
showed that when P and Q lie on opposite sides of a plane interface between 
two media, his principle yields an incident and refracted ray satisfying the law 
of refraction. 

Thus, Fermât's principle implies the three laws of geometrical optics in 
piecewise homogeneous media. It also provides a characterization of rays in 
more general inhomogeneous media, for which n(x) is not piecewise constant. 
Therefore, it provides a succinct basis for geometrical optics in arbitrary 
media. 

When curved surfaces occur, the ray path determined by the laws of 
geometrical optics sometimes makes L a maximum rather than a minimum. 
In other cases it just makes L stationary. Consequently, the correct charac­
terization of the rays, which includes all these cases, is that the rays are the 
paths which make L stationary. Therefore, Fermat's principle should be the 
Principle of Stationary Time. Fermât knew this, but ignored it-perhaps 
because "least" is shorter than "stationary", or because he wanted to show 
that God or Nature is economical, as we should all be. Only in the twentieth 
century did Carathéodory partially justify Fermat's use of "least" by showing 
that every sufficiently short portion of a light ray does minimize L among all 
paths between its endpoints. 



730 J. B. KELLER 

In 1833 Hamilton provided still other ways of describing rays. He introdu­
ced Hamilton's equations, various characteristic functions, the eiconal 
equation, etc. 

4. Waves. Because geometrical optics was so successful in describing the 
propagation of light, some scientists sought to explain why light obeyed its 
laws. Furthermore, new optical phenomena were discovered which were not 
accounted for by geometrical optics. First there was diffraction, which is the 
occurrence of light where there should be none according to geometrical 
optics, observed by Grimaldi in 1665. Then there were polarization 
phenomena found by Bartholinus in 1670, the finite speed of light measured 
by Romer in 1675 and the colors which appeared when thin plates were 
illuminated by white light, described by Newton in 1704. To account for these 
things, the theory that light was a wave phenomenon was proposed by 
Huygens (1690) and developed by Newton (1704), Young (1802) and Fresnel 
(1819). 

In 1818 Poisson devised a reductio ad absurdum argument to show that the 
wave theory was untenable. He considered an opaque circular disk, such as a 
coin, illuminated from one side by a distant source of light. See Figure 2. 

4—f 
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(a) (b) 
FIGURE 2. a. The experiment proposed by Poisson to refute the wave theory of light consists of 

an opaque circular disk illuminated by a distant light source. Some rays from the source are 
shown, together with the shadow of the disk, which is devoid of rays. In addition waves 
spreading out from the edge of the disk are shown. These waves will arrive in phase at points on 
the axis of the disk, making the axis bright. Poisson considered this unreasonable conclusion a 
death blow to the wave theory. 

b. A cross-section of the shadow the predicted bright spot on the axis. When this bright spot 
was observed by Aarago, Poisson became an ardent proponent of the wave theory. 

According to the wave theory, waves would emanate from all points on the 
rim of the disk and they would spread into the shadow of the disk. They 
would all arrive at the axis in the same phase, so the axis would be very 
bright. Therefore, a cross-section of the shadow would contain a bright spot 
at its center. Since this is ridiculous, the wave theory must be wrong. When 
Arago performed this experiment in 1818 and found the bright spot, Poisson 
was immediately converted and began working enthusiastically on the wave 
theory. 

In the search for the correct equations to describe light waves, various wave 
equations were proposed, and the equations of elasticity were discovered. The 
culmination of the search was the realization by Maxwell that light was an 
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electromagnetic phenomenon. Therefore light waves were governed by 
Maxwell's equations (1864), a set of partial differential equations which, he 
correctly concluded, were satisfied by all electromagnetic fields. The property 
that distinguishes Ught from other electromagnetic waves is their short wave­
length X, which ranges from about X = 4 X 10~5 centimeters for violet light 
to about X = 6 X 10"5 centimeters for red light. The corresponding vibration 
frequencies v range from about v = 5 X 1016 cycles/second for red to about 
v * 7.5 X 1016 cycles/second for violet. 

5. The task of solving partial differential equations. Once the equations 
governing a phenomenon such as light have been found, there arises the task 
of solving those equations in particular cases. If there are many solutions, as 
there are for partial differential equations, the solution which is appropriate 
to a particular case must be found. This solution is characterized by auxiliary 
conditions, such as initial conditions, boundary conditions, regularity 
conditions, radiation conditions, etc. These conditions themselves are 
determined by the circumstances of the particular case-the location of the 
boundaries, the physical properties of the boundaries, the properties of the 
light sources in optical problems, etc. The combination of one or more partial 
differential equations and a set of auxiliary conditions is called a problem. 

From the beginning of the nineteenth century to the present time, various 
methods have been devised to solve such problems. The basis for many of 
them is the technique of separation of variables. This technique applies to 
partial differential equations which possess special solutions which are 
products of functions of one variable each. When this is the case, each of the 
factors satisfies a separated ordinary differential equation. Most of the special 
functions of analysis arose as solutions of such separated equations, e.g., 
those of Bessel, Hankel, Legendre, Hermite, Lamé, Laguerre, Whittaker, etc. 

If the equation has "enough" product solutions, it may be possible to 
represent the solution of a particular problem as an integral or series of them 
with suitable coefficients. The theory of transforms-Fourier, Laplace, Hankel, 
Mellin, Lebedev, etc.-and the theory of orthogonal functions, were developed 
to determine these coefficients. 

When these methods are applicable, they yield an integral representation or 
a series representation of the solution. For certain values of the parameters in 
the problem, it may be easy to evaluate the integral or series. In wave 
propagation problems this is usually the case when the wavelength X is large 
compared to other lengths in the problem. However, when X is small 
compared to them, as is the case in optics, it is usually very difficult to 
evaluate the integral or series. To overcome this difficulty, methods were 
devised for the asymptotic evaluation of integrals-Kelvin's method of 
stationary phase, the method of steepest descent, etc.-and of series-Poisson's 
summation formula, the Watson transformation, the theory of alternative 
representations, etc. 

The foregoing methods, based upon separation of variables, are applicable 
only when the boundary conditions are imposed upon a complete coordinate 
surface in a coordinate system in which the partial differential equation is 
separable. In the late nineteenth century a systematic search was begun by 
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Michel (1890) and Bocher (1894) for all the coordinate systems in which 
Laplace's equation is separable. This work was continued and extended to 
other equations by Robertson (1927), Eisenhart (1934), Redheffer (1948) and 
others. The conclusion was that each equation is separable in only a limited 
set of coordinate systems. For example, in three dimensions Laplace's 
equation Aw » 0 is separable only when the coordinate surfaces are confocal 
cyclides and limiting forms of them. These are certain fourth degree surfaces 
which include quadratics, and are most simply described by quadratic 
equations in pentaspheric coordinates. The reduced wave equation 

(A + k2)u » 0 

is separable only when the coordinate surfaces are confocal quadrics and 
their degenerate forms. This yields just 11 coordinate systems. 

If the boundary surfaces are not complete coordinate surfaces of a 
separable coordinate system, the methods described so far do not apply. Then 
in some cases eigenfunction expansions may be used, but some means must 
be found to construct the eigenfunctions and to find the eigenvalues. For this 
purpose variational methods were devised, such as that of Rayleigh and Ritz. 
Another method is the conversion of the problem into an integral equation by 
means of Green's functions. But then it is necessary to find some way to solve 
the integral equation. In very special cases the Wiener-Hopf method can be 
used for this purpose, but not in general. 

6. Approximation methods and existence theory. Because of these difficulties 
in constructing explicit solutions of problems, numerous methods of approx­
imating solutions have been employed. Some of the most successful of them 
are based upon physical intuition, such as the Kirchhoff method for treating 
wave propagation problems involving short waves, and the static method for 
corresponding problems involving long waves. Gradually various systematic 
approximation methods have been developed. These include the regular 
perturbation method, singular perturbation theory, boundary layer theory, the 
use of asymptotic expansions, the method of matched asymptotic expansions, 
series truncation methods, etc. With the advent of high speed computers, a 
host of numerical methods have been implemented, such as the method of 
finite differences, the finite element method, the method of lines, the collo­
cation method, etc. 

In those special cases in which explicit solutions can be found, there is no 
question about the existence of a solution. Furthermore, the method of 
construction of the solution often shows that it is unique. In addition, the 
expression for the solution usually shows that it depends continuously upon 
the data of the problem. When a problem has these three properties-that a 
solution exists, is unique, and depends continuously on the data in a suitable 
norm-it is said to be well posed, properly posed or properly formulated, a 
concept introduced by Hadamard in 1921. For the great majority of prob­
lems, which cannot be solved explicitly, there arises the question of whether 
they are well posed. 

To answer this question, the existence and uniqueness theory of partial 
differential equations was developed, together with the tool of functional 
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analysis. Sometimes engineers and scientists, especially when studying 
mathematics, criticize this theory. They point out that the physical 
phenomenon which the problem describes is properly posed, so that it is 
unnecessary to prove it. What they fail to realize is that the purpose of the 
theory is to determine whether the mathematical problem does describe the 
physical phenomenon. It can do so only if it is well posed, because the 
physical phenomenon is well posed. A more appropriate criticism is that the 
theory stops with the demonstration of well-posedness, rather than proceed­
ing to the determination of specific properties of the solution. Regularity 
theory, which concerns the degree of smoothness of the solution, is a first step 
in this direction. 

Another question arises about approximations to solutions constructed by 
an approximation method. The question is "How close is the approximation 
to the solution?" Usually this question is answered by giving an "order 
estimate" of the error. Rarely the constant in this estimate can be found also. 
In other cases the approximate solution can be compared with explicit 
solutions of special problems and with experimental results, as we shall see. 

7. The Geometrical Theory of Diffraction. In 1953 I introduced a new 
method, the Geometrical Theory of Diffraction, for solving approximately 
problems of wave propagation. The method is intended to apply to problems 
in which the wavelength A is small compared to any other length a in the 
problem, so that X/a < 1. In terms of the propagation constant or 
wavenumber k = 2TT/A, this condition is ka » 1. If a is used as the unit of 
length, the condition for validity of this method is just A «: 1 or k » 1. As we 
shall see, the method is useful not only in this range of A, but also far outside 
it. Furthermore, it can be applied to any linear partial differential equation or 
system of such equations. 

(a) (b) 

FIGURE 3. a. The cone of diffracted rays produced by an incident ray which hits the edge of a 
thin screen obliquely. 

b. When the incident ray is normal to the edge, the cone of diffracted rays opens up to become 
a plane of diffracted rays. 
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The basic idea is that short waves propagate along rays, as is the case in 
geometrical optics. However, in addition to the three kinds of rays considered 
in geometrical optics, there are other kinds of rays which I called diffracted 
rays and complex rays. They are characterized as follows: 

4. An edge diffracted ray is produced when a ray hits an edge of a boundary 
or interface. In a homogeneous medium it is a straight line. The angle 
between the diffracted ray and the edge is equal to the angle between the 
incident ray and the edge, when both rays lie in the same medium. Otherwise, 
the angles between the two rays and the plane normal to the edge are related 
by Snell's law. Furthermore, the diffracted ray lies on the opposite side of the 
normal plane from the incident ray. From this law of edge diffraction it 
follows that one incident ray produces a cone of edge diffracted rays. See 
Figure 3. 

5. A vertex diffracted ray is produced when a ray hits a vertex of a 
boundary or interface. In a homogeneous medium it is a straight line. The 
vertex diffracted rays leave the vertex in all directions, which is the law of 
vertex diffraction. It's not much of a law, but at least it's democratic. It 
follows that in three dimensions a single incident ray produces a two 
parameter family of vertex diffracted rays. 

6. A surface diffracted ray is produced when a ray is incident tangentially 
on a smooth boundary or interface. It is a geodesic on the surface in the 
metric n ds, where n is the refractive index of the medium on the side of the 
surface containing the incident ray. The surface ray is tangent to the incident 
ray. At every point it sheds a diffracted ray along its tangent. See Figure 4. A 
surface diffracted ray is also produced on side 2 of an interface by a ray 
incident from side 1 at the critical angle s i n " 1 ^ , / ^ , which is real if 
n{/n2 < 1. In this case at every point it sheds rays back toward side 1 at the 
critcial angle. 

FIGURE 4. An incident ray from P hits a smooth surface tangentially at Px and produces a 
surface diffracted ray. This ray is a geodesic on the surface. At each point it sheds a diffracted 
ray along its tangent. 

7. A complex ray is a complex curve which satisfies the equations charac­
terizing a ray. Such a ray can be defined only if n(x) is analytic or piecewise 
analytic. In a homogeneous medium a complex ray is a complex straight line. 
There are also complex reflected, refracted, edge diffracted, vertex diffracted 
and surface diffracted rays, provided that the boundaries, interfaces and 
edges are analytic or piecewise analytic. 

These seven kinds of rays are the building blocks for more complicated ray 
paths which are composed of them. Thus, for example, an incident ray may 
hit a surface to produce a reflected ray which in turn hits another surface to 
produce a doubly reflected ray, or hits an edge to produce an edge diffracted 
ray, etc. All the direct, singly, and multiply reflected, refracted, and diffracted 
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real and complex rays are taken into account in the Geometrical Theory of 
Diffraction. 

Before explaining how the rays are used, we shall present another charac­
terization of them. 

8. Variational characterization of rays. The principle of stationary time, 
described in §3, can be extended to yield the diffracted and complex rays as 
well as the ordinary rays. To extend it we shall introduce seven classes of 
curves 6j9j = 1 , . . . , 7, one class corresponding to each of the seven types of 
rays. Then a ray of type y is defined to be a curve which makes the optical 
length L = j$n ds stationary in class Gj9j =•= 1 , . . . , 7. 

The direct rays from P to Q are the stationary curves in the class Qx of all 
piecewise smooth real curves from P to Q which have no points on the 
boundaries or interfaces. The incident plus reflected ray paths from P tó Q 
are stationary in 62, which contains curves with one point on a boundary or 
interface, but which do not cross an interface. The incident plus refracted ray 
paths are stationary in 63, which also contains curves with one point on an 
interface but which do cross the interface. 

The incident plus edge diffracted ray paths are stationary in 64, containing 
curves with one point on an edge. Incident plus vertex diffracted paths lie in 
the class C5 of curves with one point on a vertex. Incident plus surface 
diffracted ray paths lie in the class Q6 of curves with an arc on a boundary or 
interface. Complex direct rays lie in the class Cy of complex curves from P to 
Q with no points on boundaries or interfaces. Other complex rays can be 
defined similarly. 

The rays defined by this variational principle are exactly the same as those 
defined explicitly before. This principle makes precise the definition of a ray 
in an inhomogeneous medium. We did not make that explicit before because 
it involves certain ordinary differential equations-either Lagrange's or 
Hamilton's equations-which are just the Euler equations corresponding to the 
optical length integral. 

The variational principle can also be extended to include rays which are 
multiply reflected, refracted and/or diffracted. For this purpose it is merely 
necessary to introduce other classes of curves, such as that with r points on 
edges, s points on vertices, and t points or arcs on boundaries or interfaces. 
The stationary curves in this class will yield rays which have been diffracted r 
times by edges, s times by vertices and have had a combination of / 
reflections, refractions or diffractions by surfaces. By considering the rays in 
all such classes of curves, we obtain all the rays from P to Q. 

9. Asymptotic construction of solutions. We shall now show how to use the 
rays to construct approximate solutions of boundary value problems. The 
approximations will be asymptotic to the exact solutions as X tends to zero or 
k tends to infinity. For definiteness we shall consider the reduced wave 
equation for a scalar function u(x): 

Au + k2n2(x)u = 8(x - JC0), x inD. (9.1) 

The delta function represents a point source of unit strength at x0, and the 
equation holds in an exterior domain D. On the boundary dD of D some 
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boundary condition must be imposed, and we shall choose 
u(x) = 0, x in dD. (9.2) 

As |JC| » r tends to infinity, we want « to be an outgoing wave. Therefore, we 
require that u satisfy the radiation condition. If D is a two dimensional 
domain as we assume, then the radiation condition is 

B m r 1 / 2 ^ - iknu) = 0. (9.3) 

Physically, this problem has the following interpretation. A periodic point 
source is located at x0 in the exterior of an opaque object. On the boundary 
dD of the object the field produced by the source must vanish. The frequency 
of the source is proportional to k, and the amplitude of the field is propor­
tional to u. The field is in a steady state, emanating from the source, being 
scattered by the object, and radiating outward to infinity. 

To construct an asymptotic approximation to u(x) we proceed as follows: 
(a) First, we determine all the rays starting at the source point x0 and 

passing through the point x. It is convenient to label each such ray with an 
integer./ = 1, 2, 

(b) Next, we associate with theyth ray a field Uj(x) ~ Aj(x)eiks^x\ Here 
Sj(x) is called the phase function and Aj(x) is called the amplitude function. 
The phase function Sj at x is just the optical length of thejth ray from x0 to 
x. Thus, 

Sj(x)= Trick. (9.4) 

The amplitude Aj(x) is determined from the law of energy conservation in 
a narrow tube of rays, which can be expressed in the form 

nAJdo\x = nAJdo\ x, (9.5) 

Here x and x' are two points on the yth ray while do(x) and do(x') are the 
corresponding cross-sectional areas of a narrow tube of rays containing this 
ray. From this relation we obtain 

lV2 

Aj(x) = 
n(x')do(x') 

n(x)do(x) 
Aj(x'). (9.6) 

(c) Finally, we add together the fields on all the rays through x to obtain 
the result 

u(x) = 2 uj(x) ~ 2 Aj{x)eiks*x\ (9.7) 
J J 

Here Sj is given by (9.4) and Aj by (9.6). 
To illustrate the use of these formulas, we shall consider the case of a two 

dimensional homogeneous medium with n(x) * 1. Then (9.4) shows that 
Sj(x) is just the length of the y'th ray from x0 to x. Furthermore all rays, 
except surface rays, are straight lines. In two dimensions a tube of rays is just 
a strip bounded by two rays. When these rays are straight, the cross-sectional 
"area" of the strip at x is do(x) * rd0. Here d9 is the angle between the two 
bounding rays and r is the distance from their point of intersection to x. 
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Similarly do(x') = r'dO. Thus, (9.6) becomes 

Aj{x) = {r'/rf2Aj(x'). (9.8) 

From (9.8) we see that Aj(x) decreases like r~1/2 as r increases. 
In order to use (9.8) it is necessary to determine Aj(x') at some point x' on 

the ray. It is natural to try to do so at the point where the ray originates. 
Thus, Aj(x') should be determined at the source on a ray which emanates 
from the source, at the point of reflection or refraction on a reflected or 
refracted ray, and at the point of diffraction on a diffracted ray. We shall 
now explain how to do this. 

10. Diffraction coefficients and canonical problems. To find the reflected 
amplitude ATe£xr) at the point of reflection xr9 we require the sum of the 
incident and reflected fields to satisfy the boundary condition at xr asymp­
totically. In general this yields the result 

An((xr) = RAiDC(xr). (10.1) 

Here Ainc(xr) is the amplitude on the incident ray at xr and R is a factor 
called the reflection coefficient of the boundary or interface at xr. If the 
boundary condition is u — 0 we find that R = — 1, while if instead it is the 
normal derivative of u which must equal zero then ƒ?« +1 . Similar 
considerations at an interface, in which the transmitted amplitude AiT&m(xr) is 
involved and suitable interface conditions are imposed, yield (10.1) and 

^trans(^) " TAinc(xr). (10-2) 

Both R and the transmission coefficient T depend upon the angle of inci­
dence and the two values of n at xr. 

In order to determine Adif£x% the amplitude on an edge diffracted ray, we 
note that the diffracted rays all emanate from the edge. For simplicity we 
shall assume that n(x) * 1. Therefore, (9.8) holds with the origin at the edge. 
But this implies that Adi{£x') becomes infinite as r' tends to zero, in such a 
way that (O'^diffC*') remains constant. In analogy with (10.1) and (10.2) we 
assume that this constant is proportional to the incident amplitude Ainc(xd) at 
the point of diffraction xd: 

(r')l/2Am(x') « DAiDC(xd). (10.3) 

We call the factor D introduced in (10.3) a diffraction coefficient. It depends 
upon the angles of incidence and diffraction, the boundary conditions on the 
surfaces meeting at the edge, the angle between these surfaces, etc. 

To determine D we must solve a canonical problem. This is a simpler 
problem which has the same local geometry and other local properties as does 
the actual problem near xd. By examining the solution of the local problem at 
a distance of many wavelengths from the edge, we find that the diffracted 
amplitude does have the form (9.8). Furthermore, {rf)x/2Am^xf) is of the form 
(10.3) and this relation yields D. This procedure for finding D is equivalent to 
the formal application of boundary layer analysis, or of the method of 
matched asymptotic expansions, to the present problem. 

From (10.3) we see that D has the dimensions of (length),/2 so we can write 
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D = k"x^D (10.4) 

where D is the dimensionless edge diffraction coefficient. This expression 
shows that an edge diffracted field is weaker than the incident field by the 
factor k~{/\ which tends to zero as k becomes infinite. Upon using (10.4) 
and (10.3) in (9.8) we obtain for the amplitude on an edge diffracted ray the 
result 

Am{x) = DAinK{xd)/{kr)x'\ (10.5) 

To find SAi(£x) on a diffracted ray we use (9.4) to obtain 

W * ) - ƒ * * + f * « Smc{xd) + r. (10.6) 

Here we have denoted the first integral in (10.6) by Sim(xd)9 the phase of the 
incident wave at the point of diffraction xd. Now from (10.5) and (10.6) we 
have 

DAinc(xd) f . i+ft- Deikr * * ,«/>„* 
= T7T-" elkS™uJ+tk*~ , „ Wincfx.). (10.7) 

A completely similar analysis of diffraction by a vertex in three dimensions 
yields the result 

Am{r) - CAim(xd)/kr. (10.8) 

Here C is the dimensionless vertex diffraction coefficient. From (10.8) we see 
that a vertex diffracted field is weaker by the factor k~x than the incident 
field. It is also weaker than an edge diffracted field, and is in fact as weak as 
a field doubly diffracted by edges. 

For the amplitude on a surface diffracted ray there are corresponding 
formulas. They involve additional diffraction coefficients as well as decay 
exponents. However, we shall not present them because we shall not use 
them. 

To find the amplitude on a ray which has been multiply reflected, refracted, 
edge diffracted, vertex diffracted, or surface diffracted, we just apply the 
preceding formulas repeatedly. In this way we can find the amplitudes on all 
the rays through the point JC, and thus evaluate the asymptotic approximation 
(9.7) for u(x). The amplitude is decreased by a factor k~l/2 at each edge 
diffraction, A;"1 at each vertex diffraction, and by an exponential factor at 
each surface diffraction. Therefore, to obtain an approximation which is 
asymptotic to u(x) to a given order in k~\ it suffices to consider only rays 
which have undergone a limited number of diffractions. 

The equation (9.6) yields an infinite value for the amplitude at a point 
where the cross-sectional area da of a ray tube vanishes. The locus of such 
points is called a caustic surface of the ray family, and on a caustic (9.6) is 
not valid. Instead the asymptotic form of the solution is different on the 
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caustic and in a "boundary layer" near it, from what it is elsewhere. This 
different asymptotic form is given by multiplying the expression for u by a 
factor called a caustic correction factor. This factor is also obtained from a 
canonical problem, or by using boundary layer theory or the method of 
matched expansions. The result is that the field on a caustic exceeds that off 
the caustic by a factor which is a positive power of k, typically fc1/6. Thus, the 
field on a caustic is much larger than that elsewhere when k is large. 

11. Applications. Now we shall apply the preceding construction to several 
problems. In doing so we shall assume that the medium is uniform and that 
the source is very far away from the scatterer. Then we can treat the incident 
wave as a plane wave with negligible error. To show this, we consider the 
spherical wave Aeik\x~X(^/\x — x0\ of amplitude A produced by a source at 
x0. We suppose that the source location x0 recedes to infinite distance in the 
direction of the unit vector — k. In order that the wave have a finite limit, we 
assume that both the phase and modulus of A increase linearly with |JC0|, so 
that A - \x0\~

ik^. Then the spherical wave eik{^x^M)\x0\/\x - x0| has 
the limit eik^'*9 which is a plane wave. This justifies the use of a plane wave 
for a sufficiently distant source. 

As the first application, we consider the canonical two dimensional prob­
lem of diffraction of a plane wave by a half-plane or semi-infinite thin screen. 
The asymptotic expansion of Sommerfeld's exact solution of this problem for 
kr large contains a diffracted wave of the form (10.7). It agrees precisely with 
(10.7) if D is given by 

0 = " m^2 [scc *{° ~a)± csc ̂  + °°]' ° U ) 

Here 9 and a are respectively the angles between the incident and diffracted 
rays and the normal to the screen. The upper sign holds when the boundary 
condition is u = 0 on the half-plane and the lower sign when it is du/dn = 0. 
This comparison determines D for the edge of a thin screen on which either 
of these boundary conditions holds. 

Now we can use (11.1) and (10.7) to construct asymptotic solutions of other 
diffraction problems. Let us do so for the two dimensional problem of 
diffraction of a plane wave by a slit in a thin screen. We suppose that the 
screen lies on the parts y > a and y < - a of the >>-axis of a rectangular 
coordinate system, with its edges at x » 0 , / * ± a. Thus the slit of width 2a 
is the interval - a < y < a, of the ƒ-axis. Let the incident field be 

umG(x,y) = eik(xco*a-rsina\ 

Then one incident ray hits each edge normally and produces diffracted rays 
as in Figure 3b. This is shown in Figure 5 for the particular case in which 
a = 0 so that the incident rays are also normal to the screen. 

One singly diffracted ray from each edge passes through each point P not 
on the edge. The field on each such ray is of the form (10.7), and the sum of 
these two fields is the singly diffracted field us(P). It is given by 
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P ik(r\ — a sin a) + «r/4 

2(2irA:r1)
,/2 

,, ik(r2 + a sin a) + «r/4 

[sec ±(0, + a) ± csc | (0 , - a)] 

™ «, W2 + [ ^ ^ " a) ± csc I(*2 + «)] . (11.2) 
2 ( 2 77x7*2) 

Here r, and r2 are respectively the distances from the edges at y » + 0 and 
ƒ « - a to P, while the angles 0, and 02 are determined by the corresponding 
rays, as shown in Figure 5. 

Screen 

Incident 
Ray 

Incident 
Roy 

Screen 

FIGURE 5. The diffracted rays produced by a plane wave normally incident on a slit in a thin 
screen. The two incident rays which hit the sht edges are shown, with some of the singly 
diffracted rays they produce. One diffracted ray from each edge is shown crossing the slit and 
hitting the opposite edge, producing doubly diffracted rays. 

From (11.2) we can obtain the far field diffraction pattern of the slit due to 
single diffraction. To do so we let r, <p be polar coordinates of P and consider 
points P which are far from the slit, so that r » a. Then we have rx ~ r — 
a sin <p, r2 ~ r + a sin <p, 0, ~ TT + <p and ff2 *' m ~" V- By using these 
relations in (11.2) we can write us(P) in the form 

n'(r, <p) ~ -(k/2vr)l/2eikr+*/%(ip). (11.3) 

Here the far field amplitude fs (<p) due to single diffraction is found to be 

fs(9) = i 
$in[ka(sm 9 + sin a)] cos[ka(sin <p + sin a)] 

k sin I (<p 4- a) k cos \ (<p — a) 
(11.4) 

We see that the far field diffraction pattern \fs(y>)\ is the same for the two 
different boundary conditions on the screen. 

In Figure 6 the solid line shows |A:X(̂ )I as a function of <p for normal 
incidence (a « 0), based upon (11.4) with ka =•= 8. For comparison the exact 
values of the far field diffraction pattern are also shown, as dots, for the 
boundary condition u » 0. They are based upon numerical evaluation of the 
exact solution of the appropriate boundary value problem for the reduced 
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wave equation. These results are given by S. N. Karp and A. Russek, J. Appl. 
Phys. 27 (1956), 886. The agreement between the two results is quite good 
even though the slit is only about 3 wavelengths wide. 

k|f(*)| 

25n 

O .20 .40 .60 .80 1.00 1.20 1.40 1.60 

FIGURE 6. The far-field diffraction pattern of a slit of width 2a hit normally by a plane wave; 
ka » 8. The solid curve based upon (11.4) results from single diffraction, and applies to a screen 
on which « » 0 or du/dn * 0. The dashed curve includes the effects of multiple diffraction for a 
screen on which u » 0. The dots are based upon the exact solution of the reduced wave equation 
for a screen on which w * 0. The ordinate is k\f(q>)\ and the abscissa is <p in radians. 

The transmission cross-section a of the slit (per unit length) is a measure of 
the flux of energy through the slit. According to the cross-section theorem, 
a * I m / ( - a ) where ƒ(<p) is the far field amplitude. If we approximate ƒ by 
the singly diffracted amplitude fs given by (11.4), we get o~lmfs(-a) * 
2a cos a. This is just the result of geometrical optics. To obtain a more 
accurate result we shall consider the doubly diffracted rays. They are pro­
duced by the two singly diffracted rays which cross the slit and hit the 
opposite edges. 

To find the field u'nc incident upon the upper edge on the ray singly 
diffracted from the lower edge, we use the second term in (11.2). We shall 
choose the upper sign, appropriate to a screen on which u » 0. Then we set 
02 * *n/2 and r2 * 2a to obtain 

Substitution of this field into (10.7) yields the field on the doubly diffracted 
rays from the upper edge. A similar calculation yields the doubly diffracted 
field from the lower edge. The sum of these two doubly diffracted fields is the 
total doubly diffracted field ud. 

Far from the slit ud can be written in the form (11.3) with/,(<p) replaced by 
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another function fd(<f>). In the forward direction <p = - <x,fd has the value 

1 
ƒ „ ( - « ) = -

k{mkd) 1/2 

~i2ka(l+sina) + hr/4 p/2Aw(l-sina) + w/4 1 
£ + £ I 

1 + sin a 1 ~ sin a 
(11.6) 

Now we calculate o ~ Im[fs(- a) + fd( — a)] and obtain 

o — 2a cos a — 1 

k(irka) 1/2 

cos[2fcj(l + sin a) - TT/4] 
1 + sin a 

cos[2ka(l - sin a) - TT/4] 
1 — sin a 

For normal incidence, a = 0 and (11.7) becomes 

a ^ cos(2&a — TT/4) 
2^ 1 -

IT 1/2 
( * « ) • 

3 / 2 

(11.7) 

(11.8) 

In Figure 7 the solid curve shows o/2a as a function of ka, based upon (11.8). 
The points shown in the figure are obtained from the exact solution of the 
boundary value problem. They are given by Karp and Russek, loc. cit. The 
agreement is very good for ka large, as it should be, but it is also surprisingly 
close even when the wavelength is several times the width of the slit. Even 
better agreement is obtained when additional multiply diffracted rays are 
taken into account, as is shown by the dashed curve in the figure. 

TÎ 

l.30-i 
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L00-I 
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I 
4.00 aoo 6.00 700 8.00 

~l 
9.00 

—! 1 
10.00 10.75 

ka 

FIGURE 7. The transmission cross-section of a slit of width 2a as a function of ka, for normal 
incidence with u = 0 on the screen. The solid curve, based on (11.8) results from single and 
double diffraction; the dashed curve includes single and all multiple diffraction. The dots are 
based upon the exact solution of the reduced wave equation with u = 0 on the screen. The 
ordinate is o/2a and the abscissa is ka. 

A similar calculation can be made for the three dimensional problem of 
diffraction of a plane wave by a circular hole of radius a in a thin screen. 
There are two differences, however. First of all, in calculating the diffracted 
amplitude from (9.5) we must find the cross-sectional area da of a tube of 
diffracted rays in three dimensions. Secondly, we must take account of the 
fact that the symmetry axis of the circular hole is a caustic of the diffracted 
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rays. When these differences are taken into account, we can calculate the 
singly and doubly diffracted fields us and ud as before. Then by using the 
cross-section theorem appropriately, we can find o*. For a wave normally 
incident on a screen with the boundary condition M = 0WC obtain in this way 

n 2 sinT2A:a — 77/41 
- ^ = 1 ' TTT-^ • (11.9) 

In Figure 8 the solid curve shows o /ira2 based upon (11.9) as a function of 
ka. Results from the exact solution of the boundary value problem are shown 
for comparison. They are given by C. J. Bouwkamp, Repts. Prog, in Phys. 17 
(1954), 35. The agreement is very good for ka large, as we expect it to be. It is 
also quite good when ka is not very large. 

I.40T 

| , , , , , , , , , j 
I 2 3 4 5 6 7 8 9 10 II 

ka 

FIGURE 8. The transmission cross-section a of a circular aperture of radius a in a thin screen 
on which u * 0. The wave is normally incident. The solid curve, based on (11.9), results from 
single and double diffraction; the dashed curve also includes all multiple diffractions. The dots 
and the broken curve up to ka = 5 are based upon the exact solution of the reduced wave 
equation. The ordinate is a/ma1 and the abscissa ka. 

As a final example we shall consider the scattering of a plane electromagne­
tic wave from the perfectly conducting frustum of a right circular cone shown 
in Figure 9. In this case u is the electric field, which is a vector field. 
Consequently the amplitude Aj is a vector. It can be shown that Aj is normal 
to theyth ray and that its direction remains constant along the ray when the 
medium is homogeneous. Otherwise Aj undergoes parallel transport with 
respect to the metric n(x) ds. Diffracted rays are produced at the two circular 
edge of the frustum, as in the scalar case. Furthermore the length of Aj is still 
determined by (9.5). However the diffraction coefficient is a matrix with 
entries like (11.1). They take account of the finite angle between the surfaces 
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at the edges of the frustum. In fact they are determined from Sommerfeld's 
solution of diffraction by a wedge on which either u = 0 or du/dn = 0. 

FIGURE 9. Section through the axis of the frustum of a right circular cone. The directions of the 
radar source and receiver are shown. The angle between these directions, called the bistatic angle, 
is 10.25°. The frustum can be rotated about an axis normal to the plane of the figure, and its 
angular position is <f>. 

By using these considerations the scattered field has been calculated, and 
the results are shown in Figures 10, 11 and 12 along with the corresponding 
values measured experimentally. These curves are from G. W. Gruver, 
Investigation of scattering principles, Vol. 1, General Dynamics, Fort Worth 
1969, pp. 72-74. For this case the exact solution is not known. Instead the 
comparison with experiment indicates the accuracy of the asymptotic 
construction. 

1H 1 1 1 1 1 1 1 1 1 
0 - 2 0 - 4 0 - 6 0 - 8 0 - 1 0 0 - 1 2 0 - 1 4 0 - 1 6 0 - 1 8 0 

Aspect angle <f> degrees 

FIGURE 10. The radar cross-section of the frustum in Figure 9 as a function of the angle $. The 
measured values are represented by the solid curve, and the values computed using the 
geometrical theory of diffraction are given by the dashed curve. The ordinate is the radar 
cross-section a in decibels relative to one square meter and the abscissa is ^ in degrees. These 
results are for W polarization, in which the incident field and the measured field both he in the 
plane of Figure 9. 
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FIGURE 11. The measured and calculated phase of the scattered field for the same case 
Figure 10. The ordinate is the scattered phase in radians. 
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FIGURE 12. Same as Figure 10 for HH polarization, in which the incident and measured fields 
are both normal to the plane of Figure 9. 

12. Asymptotics. The Geometrical Theory of Diffraction has been presented 
as a synthetic procedure for constructing asymptotic approximations to the 
solutions of a class of boundary value problems. We shall now explain where 
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this procedure comes from, and how to improve the approximation which it 
yields. 

In the nineteenth century many authors tried to solve certain linear 
ordinary differential equations containing a large parameter k by writing the 
solutions in the form 

«(*,*)«***<*> 2 jhiM*)- 02-1) 
«=o (ik) 

We shall call the series (12.1) a wave. They substituted the wave (12.1) into 
some particular equation and equated to zero the coefficient of each power of 
k. In this way they obtained a recursive system of ordinary differential 
equations for the successive determination of the phase S(x) and the 
amplitudes An(x). However, they were unable to prove that the resulting 
series converged. 

In 1885 Poincaré proved that in general the series diverges. Instead, he 
suggested that the series is asymptotic to the solution in the sense that for 
each N 

u(x, k) - e<™<*> 2 ~h A„(x) = ol ± ) as A: ^ oo. (12.2) 

In the same year Stieltjes also introduced asymptotic series in another 
context. Since then the asymptotic character of such series has been proved in 
great generality by Korn, Birkhoff, Langer, Turrittin, Wasow, Sibuya and 
many others. The use of such series is often called the WKBJ method after 
Wentzel, Kramers and Brillouin who used them in quantum mechanics, and 
Jeffreys who used them in other problems. 

The investigations referred to above, and others of the same period, 
concerned the waves associated with the rays of geometrical optics. None of 
them considered diffracted waves. However, diffracted waves were present in 
the asymptotic expansions of the exact and approximate solutions of various 
problems. For example, edge diffracted waves occurred in Sommerfeld's 
solutions of diffraction by a half plane and by a wedge. They also appeared 
in Rubinowicz' approximate solution of diffraction by an aperture. Vertex 
diffracted waves occurred in diffraction by a semi-infinite circular cone, 
analyzed by Felsen, by Hansen and Schiff, and by others. Surface diffracted 
waves were found by Watson in his study of diffraction by a sphere, by Franz 
in the solution of diffraction by a circular cylinder, and by Friedlander in the 
analysis of the diffraction of pulses by cylinders with smooth convex cross-
sections. Complex waves were present in refraction by a plane interface when 
the angle of incidence exceeded the critical angle. They also occurred in the 
plane wave representation of a spherical wave. 

The foregoing results and others suggested to me that the asymptotic 
theory should be extended to include diffracted waves. The method presen­
ted in the preceding sections shows how they can be constructed. However it 
yields only the leading amplitude A0(x) on each ray. To obtain the full 
asymptotic expansion, an entire series of the form (12.1) must be used to 
represent the field on each ray. This requires the introduction of additional 
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diffraction coefficients, and the analysis of further canonical problems to 
determine them. For diffraction by the edge of a thin screen, some of these 
coefficients have been found by Karp and Keller (1961) and all of them have 
been determined by Ahluwalia, Boersma and Lewis (1965). 

The preceding considerations indicate how this theory can be applied to 
any linear partial differential equation or system of such equations, with 
boundaries of any shape. Many such applications as well as extensions of the 
theory, have been made by numerous investigators, including R. M. Lewis, D. 
Ludwig, B. R. Levy, B. D. Seckler, R. N. Buchal, N. Bleistein, J. Cohen, B. 
Granoff, R. A. Handelsman, B. Matkowsky, F. C. Karal, E. Zauderer, D. S. 
Ahluwalia, L. Felsen and his co-workers, D. G. Magiros, S. I. Rubinow, B. 
Morse, Y. M. Chen, G. S. S. Avila, E. B. Hansen, H. Y. Yee, M. C. Shen, R. 
E. Meyer, E. Resende, V. C. Mow, L. Kaminetzky, W. Streifer, F. Hagin, R. 
Jarvis, E. Larsen, G. Rosenfeld, R. Voronka, C. Tier, V. Babitch and his 
co-workers in Leningrad, P. Ufimtscv, etc. 

In some cases it has been possible to compare the results of the present 
theory with the asymptotic expansion of the exact solution, obtained by some 
other method. In all cases, the two expansions have agreed after compu­
tational errors were corrected. This agreement proves the correctness of the 
theory in those cases, but of course it does not show it in general. 

It remains to be proved in general that the series expansion, constructed by 
the theory described above, is indeed asymptotic to the solution of the 
corresponding boundary value problem. However, this result has been proved 
in many cases. Two methods of analysis have been employed. One method 
deals directly with the constructed expansion, or with some more uniform 
approximation from which the expansion can be obtained, and attempts to 
estimate its error. F. Ursell, D. Ludwig, C. S. Morawetz, M. Taylor, and A. 
Majda have used this method successfully. 

The other method, employed by R. K. Luneburg and M. Kline, relates the 
asymptotic expansion of the solution of an elliptic equation to the singu­
larities of a solution of a corresponding hyperbolic equation. This method 
requires that the solution of the hyperbolic equation decay sufficiently rapidly 
as time increases. Great progress in proving that this decay does occur for 
various problems has been made by C. S. Morawetz, P. D. Lax, R. S. Phillips, 
C. Bloom, N. D. Kazarinoff, W. Straus, J. Ralston, R. M. Lewis, W. Littman 
and others. 

It has been pointed out that the geometrical theory requires a special 
treatment of the solution near a caustic surface. D. Ludwig and Y. Kravtsov 
devised uniform representations of solutions in regions containing the sim­
plest caustics, which avoid this special treatment. J. Arnold, Duistermaat and 
others have classified all the generic caustics in any number of dimensions, 
using the results of R. Thorn on the singularities of mappings. Then Duis­
termaat, using L. Hörmander's Fourier integral operators, extended the 
uniform asymptotic representation of Ludwig and Kravtsov to these caustics. 
Ludwig has also obtained uniform asymptotic solutions of various other kinds 
of problems. 

13. Conclusion. We have considered the approximate solution of problems 
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of wave propagation, as exemplified by light propagation, and of linear 
partial differential equations in general. One feature of the method we 
employed is that it yields asymptotic expansions of solutions, not convergent 
expansions. These results are very accurate, even far outside the range where 
they should be good. The reason why this is so is not known, and explaining 
it is an outstanding problem. It is related to the fact that an asymptotic 
expansion of a function is an expansion around a singular point, in this case 
the point k = oo. 

A second desirable feature of the method is that it replaces the problem of 
solving a partial differential equation by that of solving ordinary differential 
equations. These are the ray equations and the transport equations. Despite 
the fact that the partial differential equation is linear, the ray equations are 
nonlinear. Nevertheless, they enable us to construct approximate solutions. 

A third feature is the consideration of canonical problems. It provides a 
general use for special solutions. This enhances the significance of those 
solutions. It also enables us to identify other special problems which should 
be solved. 

Finally, we note that an older, displaced theory-the ray theory-was used to 
solve asymptotically the problems of a new theory which had displaced it-the 
wave theory. It must be true in general that any outmoded theory which is 
superseded by a new one is asymptotically correct in some limiting case. 
Otherwise, it would not have been accepted as a satisfactory theory in the 
first place. Therefore, it should provide a basis for solving asymptotically the 
problems of the new theory. This methodological principle, which can be 
illustrated by other cases as well as the present one, may be helpful in guiding 
us to the solution of other problems. 
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