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BOOK REVIEWS 

Nonlinear operators and differential equations in Banach spaces, by Robert H. 
Martin, Jr., Wiley, New York, 1976, xi + 440 pp., $27.50. 

Ordinary differential equations in Banach spaces, by Klaus Deimling, Lecture 
Notes in Math., vol. 596, Springer-Verlag, Berlin, Heidelberg, New York, 
1977, 136 pp. 

In his celebrated lecture at the Paris Mathematical Congress of 1900, 
Hubert asked whether the expansion of mathematical knowledge would not 
finally make it impossible for the single researcher to grasp all parts of it. As 
partial answer he said that all true progress goes hand in hand with the 
development of sharper aids and simpler methods, which make it easier to 
understand earlier theories and to circumvent complicated older procedures. 

It would be hard to find better grounds for Hubert's optimism than are 
given by current progress in the field of abstract differential equations. An 
excellent account of this current progress can be found in Martin's book 
(1976), also in Ordinary differential equations in Banach spaces, 1977, by Klaus 
Deimling. The latter is volume 596 of the Springer Lecture Notes, but is a 
much more scholarly and polished job than the category "lecture notes" 
would lead one to expect. Both Martin and Deimling are warmly recom­
mended by this reviewer. They are complementary rather than competitive, 
and the pleasure of reading one is enhanced by reading the other. 

A major difference in the two texts is that Martin includes background 
material which can be found in other books, while Deimling has chosen to 
emphasize current developments only. The former point of view has peda­
gogical advantages, but it reduces the scope below what one might hope for 
from the book's size and from the dust-jacket description. Thus, "the impor­
tant, fundamental techniques of nonlinear functional analysis" could include 
the notion of topological degree, bifurcation theory, general nonlinear 
semigroups, and variational inequalities, all of which are, in fact, excluded. 
(This is said in no critical spirit, but simply as information.) Aside from a 
discussion of the connection between spectrum and numerical range in 
Chapter 3, and a development of fixed-point theory with application to 
Hammerstein equations in Chapter 4, the main strength of the book for 
research mathematicians would seem to be in the field of abstract differential 
equations. This is a field to which Martin (and also Deimling) have made 
fundamental contributions. 

Let us begin with the differential equation u' = ƒ(t, u) where u is a 
function from an interval to a real Banach space X. When ƒ is Lipschitzian, 
existence and uniqueness follow much as in the classical case dim X < oo, in 
which case the equation is a finite system. By standard techniques (Dugundji, 
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Lasata-Yorke) the above remark gives approximate solutions when ƒ is only 
continuous. However one cannot expect an exact solution under that 
hypothesis, because every proof of Peano's existence theorem makes essential 
use of compactness. In fact, counterexamples are well known (Dieudonné, 
Yorke, Godunov). 

Additional hypotheses ensuring existence generally involve a function co: 
R x R ^ R such that the scalar equation p' = co(f, p) has suitable properties; 
these properties need not be spelled out here. The simplest conditions are of 
the form 

0) \f«> x)-H*>y)\ <*>(*> \*-y\)-
However, it has been known at least since McShane's work (1939) that a 
one-sided condition often suffices. This remark in the abstract case leads to 
the rich theory of dissipative, accretive or monotone operators. (Terminology 
is not uniform and, in particular, "monotone" does not mean "monotone in 
the sense of Collate.") The appropriate condition is now of the form 

(2) (p - q, x - y) <\x - y\a(t, \x - y\) 

where p = ƒ(*, x\ q = f(t,y) and (a, b) = (a, b)_ or (a, b)+ is the semi-
inner-product; cf. Lumer (1961). (The semi-inner-products are defined by 
means of the duality mapping, or also by means of right- or left-handed 
derivatives of the norm. If the norm is generated by an inner product, both 
semi-inner-products coincide with it.) Once a local solution is obtained one 
can declare that u < v if v is an extension of u; then Zorn's lemma gives a 
global solution on a maximum interval of existence. 

In the theory of evolution equations and nonlinear semigroups it is almost 
essential to let ƒ be multivalued, so that the equation becomes u' E ƒ(/, u); in 
fact, an interesting book by H. Brézis is formulated entirely in that language. 
The inequality (2) is now required ïorp E f(t, x)9 q E f(t,y). Central results 
here or in the single-valued case are due to Crandall, Brézis, F. Browder, 
Pazy, Benilan, Lakshmikantham, Phillips, Yorke, Kato, Liggett, Martin, 
Murakami, Pulvirenti, Knight, Fitzgibbon, Chow and Schuur, and Eisenfeld. 

If the trajectory u(t) is required to stay in a closed set Q c I , we denote 
the distance from x to Î2 by |JC, fi| and introduce the following condition of 
Nagumo (1942): 

(3) lim inf h~l\x + hf(t9 x), Q\ = 0 (x E Q). 

To get by with a hypothesis in Î2, not involving X — Ö, one projects the 
corners of the Euler broken-line approximation ue onto Q at each step. It is 
then necessary to show that the interval of existence of ue does not tend to 0 
with e; this involves a subtle proof that (3) holds uniformly under natural 
hypotheses. Although important concrete cases were considered by Nagumo, 
Crandall and Hartman, the principal results in the abstract case are due to 
Martin; they are, on the whole, definitive. As an added bonus, note that 
existence of a solution in Î2 plus uniqueness for the initial-value problem 
implies invariance of 2. 

These results apply to problems that, apparently, have little to do with 
differential equations; for example, to the proof that T(X) is dense in X for 
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certain classes of accretive operators T and to the existence of fixed points 
(Browder, Deimling, Martin, Crandall, Vidossich). A clever idea of P. Volk-
mann gives Browder's theorem to the effect that, if Q is a locally closed subset 
of X9 the set of exposed points of Q is dense in 30; this implies a well-known 
theorem of Bishop and Phelps on convex sets. The gist of Volkmann's 
argument is to construct a solution which escapes from Q, and to show that it 
could not escape, by (3), if the desired conclusion were false. 

To generalize the theorem of Peano, one can take ƒ = g + h where g is 
completely continuous and h Lipschitzian. A different generalization involves 
hypotheses of the form 

af(t, Q) < ù)(t9 aS2), 

where SI c X and where a is the Kuratowski measure of noncompactness. 
Interesting results here have been obtained by Cellina, Szufla, Ambrosetti, 
Corduneanu, Pianigiani, Danes, De Blasi, Eisenfeld, Lakshmikantham, Bern-
feld, and Deimling; the subject is not yet closed. 

When u' = ƒ(/, u) is written in integral form it leads to an equation of 
Hammerstein type, x + KFx = 0. In the classical case F is a substitution 
operator and K a linear integral operator; these are associated with the names 
of Nemytskii and Urysohn, respectively. However, in a far-reaching generali­
zation, Minty brings the subject into contact with variational inequalities 

(y ~x9G(x)) >0, y E Q c *, 
and obtains existence by use of the Knaster-Kuratowski-Mazurkiewicz 
theorem. This in turn follows from Sperner's lemma, just as the Brouwer 
theorem and its Schauder-Leray generalization also follow. In the last analy­
sis, then, it could be said that these major results of abstract mathematics are 
obtained by a sophisticated process of counting! Minty's approach gives new 
insight into the meaning of "coercivity" and generalizes a large literature. 

The importance of variational inequalities is also underlined by the splen­
did work of Kinderlehrer on solutions of partial differential equations in the 
presence of obstacles. A somewhat different class of variational problems 
have the peculiarity that their solutions are functions of compact support. 
Such problems have been stuided by Berkowitz and Pollard, Brézis, Brow­
ning, Friedman, and, using his theory of quadratic forms in Hilbert space, by 
Hestenes. A useful tool in this study is an extension of the Hadamard-Lit-
tlewood dérivâtes theorem to functions R -* X which greatly sharpens classi­
cal results. 

So far, we have stressed existence. Let us now outline a few results in error 
estimation and stability. If 8(t) = \u(t)9 Q\ and (2) and (3) hold, then, in 
general, 

(4) K - f(t> u)\ < e =» 8' < <o(f, 8) + e, 

where 8' denotes a suitable Dini derivate. If there exists a point >> E Q nearest 
to x, the "tangent condition" (3) can be replaced by the "normal condition" 

(5) ( * - ^ / ( ' , ; 0 ) + < 0 . 
Condition (5) was introduced by Bony in his study of the sharp maximum 
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principle for partial differential equations. An inequality similar to (4) holds 
for solutions of broad classes of nonlinear parabolic systems, not indeed 
universally, but at the point x where 5(f, x) = \u(t, x), S2| attains its maxi­
mum. This observation, due in the main to W. Walter, generalizes invariance 
theorems of Weinberger, Bebernes and Schmitt, Chabrowski, and Haar. 
Further generalization, by Lemmert and Volkmann, allows the functions to 
have values in X, and also weakens the assumptions on the second deriva­
tives; this weakening is of interest even in the classical theory of partial 
differential inequalities. 

A curious feature of the multivalued case u' E ƒ(/, u) + e(t) is that one 
element of ƒ(/, u) can be used for getting u' and another can be used in (3) or 
(5). Similar results hold when 8(t) = \u{i) - v(t)\ for approximate solutions 
u9 v, and also when |JC| is replaced by a more general measure of magnitude 
II*|j or V(t, x); this measure need not be real-valued. Corresponding to the 
use of Dini dérivâtes when n = 1, one can let u' (as well as f) be multivalued; 
then u\i) denotes the set of all right-hand derived values at t and the 
equation is written in the form 

(6) u'(t)nf(t,u(t))*0. 

It is useful to distinguish conditions that hold "modi?" (except in an 
enumerable set) from those that hold "mod N" (except in a null set). For 
example, in this language the mean-value theorem reads as follows: Let 
K c X be closed and convex. For / E [a, b], let u be continuous, let u'(t) be 
nonempty mod £ , and let u'(i) n K be nonempty mod N. Then (u(b) — 
u(a))/(b — a) E K. Among contributors to the general theory of invariance, 
estimation, and stability as sketched above are Nagumo, Mazur, Saks, Tapia, 
Collatz, Dieudonné, McLeod, Walter, Bony, Crandall, Lakshmikantham, 
Schroder, Murakami, and Volkmann. The latter's main result is one of the 
deeper theorems in this general area; it is stated without proof by Deimling 
and omitted by Martin. 

Although there are precursors in the work of Walter and L. Eisner, the 
definitive formulation of quasimonotonicity in the abstract case is due to 
Volkmann. If 12 is an order cone in the sense of Krein, Volkmann's results 
can be interpreted as saying that Q is invariant; hence, they are contained in 
(4). Here the continuity condition (1) or (2) can be replaced by 

II /('> y) - ƒ ('. *)| | < «('. | y - *|) when ƒ > x9 

where || • || is one of the Kamke norms which generate the order relation and 
where the cone is assumed to have nonempty interior. The first use of this 
surprisingly weak hypothesis is due to Walter, as is an interesting theorem 
asserting equivalence of Volkmann's quasimonotonicity condition with the 
Nagumo tangent condition for the order cone. (Walter's proof has been 
simplified by Deimling.) Also due to Walter is a striking use of quasimono-
tone systems in the study of nonlinear parabolic equations and boundary-
layer theory; this "line method" has recently been extended to unbounded 
regions by Voigt. The theory sketched above generalizes a substantial litera­
ture, going back to M. Muller (1926). 

An important application of these techniques is to relations 
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z'(')n/(*,*(O)*0. 
where z is a linear operator on a complex Hubert space. If Q is the Siegel disk 
z*z < 1, the tangent condition is often needed only on the Silov boundary; 
this remark greatly increases the scope of the results. The special case 

a(t) + b(t)z(t) + z(t)d{t) + z{i)c{i)z{t) E z\t) 
applies to equations of multiple transmission lines and transport processes, 
and also yields results on pure operator equations (no derivatives). For 
example, if b ^ 0 and dî^O, then one of the functions 

f(z) = a + bz{\ - cz)~ld9 g{z) = c + dz{\ - az)~xb 

maps the Siegel disk into itself if, and only if, the other one does. Further 
study of operator differential equations gives results on oscillatory properties 
of (pzj + qz = 0 which parallel those in the classical case. Extension to 
higher-order equations involves a far-reaching generalization of the notion of 
"adjoint" where, instead of an adjoint operator, one has an adjoint subspace. 
Among contributors to these developments are Ambartzumian, Preisendorfer, 
Reid, Bellman, Kalaba, Wing, Ueno, Chandrasekhar, A. Wang, Zakhar-Itkin, 
J. Levin, Paszkowski, Shumitzky, Helton, Krein and Shmul'yan, Etgen and 
Lewis, and Coddington and Dijksma. 
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Nonlinear semigroups and differential equations in Banach spaces, by Viorel 
Barbu, Noordhoff International Publishing, Leyden, The Netherlands, 1976, 
352 pp. 

The typical first graduate course in ordinary differential equations begins 
with a discussion of the initial-value or Cauchy problem. Under a variety of 
assumptions, it is shown that this problem has a solution, that it is unique, 
and that it depends nicely on the data. Thus, under mild restrictions, Cauchy 
problems in classical ordinary differential equations are well posed. As the 
course progresses and more special topics are pursued, these preliminary 
results begin to seem rather simple and, in a short time, are taken for granted 
by the serious student. Nevertheless, one is always thinking in terms of them. 
Scientists and engineers often think the same way: a system being modeled 
has a state u which changes in time according to a differential (or evolution) 
equation 

(EE) du/dt = A{u) 

which summarizes the dynamics of the system. In classical mechanics and 
many other fields the state is a list of numbers (giving, e.g., velocities and 
positions of bodies or populations of species or quantities of reactants, etc.,) 
and (EE) is a classical ordinary differential equation, where "classical 
ordinary differential equation" means roughly that A continuously maps an 
open subset of some R^ into R*. One specifies an initial condition 

(IC) u(0) - u0 


