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It is pretentious that one with my credentials should sign-albeit jointly,
with a historian of science-a review of a compendium of knowledge which
has rarely, if at all, been surpassed during this century. But the editor of these
reviews feels that there should be some statement of how “a sophisticated
astronomer” of the present reacts to the astronomy of antiquity. Perhaps he
had in mind a statement like the following which one reads in Hardy’s
well-known A mathematician’s apology .

Finally, as history proves abundantly, mathematical
achievement, whatever its intrinsic worth, is the most
enduring of all.

We can see this even in semi-historic civilizations. The
Babylonian and Assyrian civilizations have perished;
Hammurabi, Sargon, Nebuchadnezzar are empty names; yet
Babylonian mathematics is still interesting, and the Baby-
lonian scale of sixty is still used in astronomy. But of course
the crucial case is that of the Greeks.

The Greeks were the first mathematicians who are still
“real” to us today. Oriental mathematics may be an interes-
ting curiosity, but Greek mathematics is the real thing. The
Greeks first spoke a language which modern mathematicians
can understand; as Littlewood said to me once, they are not
clever schoolboys or ‘scholarship candidates’ but ‘Fellows of
another college.” So Greek mathematics is ‘permanent’, more
permanent even than Greek literature. Archimedes will be
remembered when Aeschylus is forgotten, because languages
die and mathematical ideas do not.

In a similar vein-exaggerated but not unfairly-what could a “real”
astronomer of today say of ancient astronomy? Here there is a difficulty.
Mathematical truths are indeed permanent; but ancient astronomy in which
circular motions play a role comparable to a law of inertia can hardly claim
the allegiance of a modern astronomer in the manner that Archimedes’
method of determining the value of pi can claim the allegiance of a
mathematician. But to say that is not to say that the demonstration of
Apollonius, that an eccentric movement can always be replaced by an
epicyclic motion where the center of the epicycle moves on a circle with the
observer at its center and with the radius of the epicycle equal to the
eccentricity, will not delight anyone with some feeling for mathematical
elegance.

In another context Professor Neugebauer quotes Hilbert as having once
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expressed that the importance of a scientific work can be measured by the
number of previous publications it makes superfluous to read. And it is a fact
that Kepler and Newton have made the study of Ptolemaic and Babylonian
astronomy superfluous. But at what loss? An astronomer of today is hardly
even aware of what Professor Neugebauer has repeatedly emphasized:
“Astronomy is the only branch of the ancient sciences which has a
continuous recorded history, from antiquity, through the collapse of the
Roman Empire, through the Renaissance, and to the present.... And
further that astronomy is the most important force in the development of
science since its origin some time around 500 B.C. to the days of Laplace,
Lagrange, and Gauss.”

And the loss is even greater: there are several aspects of current
astronomical problems which have overtones in the astronomy of antiquity;
more than overtones, indeed parallels. Let two examples suffice.

The basic problem that was undertaken by the scribes of Babylon consisted
in predicting the positions of the moon and the planets over long periods of
time with a precision beyond those of the individual observations subject to
fluctuations and to gross errors. All these phenomena have periodic character
with complicated fluctuations superposed.

The basic problem confronted by the Babylonian astronomers is one that is
familiar to an astronomer of the present: it is to unravel a complicated
periodic phenomenon as the superposition of a number of periodic effects.
The method (as explained in greater detail below) probably originated in the
theory of the moon. The times of the new moons could easily be found if the
sun and the moon each moved with a constant velocity. One supposes that
mean values arranged in periodic cycles, e.g. 19 years contain 235 months,
may be used to describe this ideal movement. The actual movement will
deviate from this mean in a periodic manner. These deviations may now be
treated as a new periodic phenomenon-in Babylonian astronomy these
deviations were represented by zigzag or step functions. Thus starting with
mean values, one calculated the secondary corrections required to describe
the periodic deviations. Continuing in this manner, the Babylonians were led
to a very close description of the actual facts. Described in this manner, there
is no difference between the way a Babylonian scribe sought to predict the
time at which and duration for which the crescent of the moon would first be
sighted after conjunction and the way in which a radio astronomer of the
present determines the periods of pulsars correct to nine decimals when
successive pulses are subject to large fluctuations both in intensity and in
form. The recognition of this fact is a sobering thought.

Consider again the basic theorem of Apollonius to which we referred
earlier. The main importance of that theorem lies in the fact that it freed
astronomy from Eudoxus’ concept of geocentric spheres and allowed for
variable geocentric distance and for centers of rotation outside the earth. The
freedom which one thus obtained for interchanging eccenters and epicycles
implies an equivalence of all four vertices of the corresponding paral-
lelograms as centers of rotation. It is this freedom which provides the basic
kinematic equivalence of geocentric and heliocentric motions; a freedom
which Copernicus was to use extensively some 1750 years later. This trans-
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formation of Apollonius underlies modern galactic astronomy in which orbits
of the individual stars are described as epicycles about chosen local frames
describing circular orbits; and indeed there is no difficulty in generalizing the
transformation of Apollonius to obtain the laws of star streaming.

To turn to another aspect of a modern astronomer’s reaction to the
astronomy of antiquity, namely, astrology. The fact that astrology seems to
represent the principal application of the elaborate analysis of the Ptolemaic
system, enshrouds ancient astronomy with a superstitious element which
repels him. But this is an altogether irrational reaction. As Professor
Neugebauer has emphasized on several occasions:

We should not forget that we must evaluate such doctrines
against the contemporary background. To Greek
philosophers and astronomers, the universe was a well
defined structure of directly related bodies. The concept of
predictable influence between these bodies is in principle not
all different from any modern mechanistic theory. And it
stands in sharpest constrast to the ideas of either arbitrary
rulership of deities or of the possibility of influencing events
by magical operations. Compared with the background of
religion, magic, and mysticism, the fundamental doctrines of
astrology are pure science. Of course, the boundaries
between rational science and loose speculation were rapidly
obliterated and astrological lore did not stem-but rather
promoted—superstition and magical practices. The ease of
such a transformation from science to humbug is not diffi-
cult to exemplify in our modern world.

There is one other aspect of the science of antiquity that has intrigued me.
We often think of science as a part of culture; that in its pure form the
pursuit and practice of science, like the pursuit and practice of any of the arts,
have elements that elevate the human mind; and that this common feature in
all creative activity results from a search for beauty. One can find many
expressions of this thought scattered through the scientific literature. Profes-
sor Neugebauer often quotes from Hilbert; let this further quotation from
Hilbert suffice.

Our science, which we loved above everything, had
brought us together. It appeared to us as a flowering garden.
In this garden there were well-worn paths where one might
look around at leisure and enjoy oneself without effort,
especially at the side of a congenial companion. But we also
like to seek out hidden trails and discovered many an unex-
pected view which was pleasing to our eyes; and when the
one pointed it out to the other, and we admired it together,
our joy was complete.

Similar expressions of appreciation for the beauty of science can be found in
antiquity, and one epigram on this subject contained in manuscripts of the
Almagest and in the Greek Anthology (1X, 577) is attributed to Ptolemy.
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I know that I am mortal and the creature of a day,

But when I contemplate the intricate circling spirals of the
stars,

No longer do my feet touch earth, but beside Zeus himself
I take my fill of the immortal nectar of the gods.

Let me conclude by expressing my own reaction to the astronomy of
antiquity in the following way. Some twenty-five years ago, I met a colleague
of mine emerging from the office of Enrico Fermi. He told me that he had
been discussing physics with Fermi; and after a moment’s pause asked, “Why
am I doing physics? I should probably be a grocer”. If Apollonius or Ptolemy
had offices adjoining mine, I do not doubt that I should have a similar feeling
emerging from their offices.

S. CHANDRASEKHAR

A History of Ancient Mathematical Astronomy is at once the most compre-
hensive and detailed history of ancient astronomy undertaken. It is of vast
scope. From Meton of Athens in the fifth century B.C. and the unnamed
scribes of Babylon, through Hipparchus and Ptolemy, to the shadowy figures
of Olympiodorus and Stephanus in the early period of the Byzantine Empire,
from primitive shadow tables and calendars of star phases, through
Babylonian ephemerides and the Almagest, to the odd fragments preserved in
late astrologers, the entire panorama of astronomy is set forth. Professor
Neugebauer brings to this work the abilities of a mathematician, philologist,
and historian. Perhaps the most striking application of these skills is in the
reconstruction of complex mathematical procedures, arithmetical or
geometrical, from fragmentary and sometimes distorted evidence. Such
reconstructions are the foundation of our understanding of Babylonian
astronomy and, if we except only the work of Ptolemy, which can (almost)
speak for itself, of most Greek astronomy. The source material is by and
large broken pieces of clay tablets, scraps of papyrus, scattered remarks and
quotations by writers of varying degrees of (in-) competence. It is the task of
the historian to reconstruct from this evidence a rigorous technical analysis
and, where possible, history of ancient astronomy. From the fundamental
structure to the smallest detail everything must be subject to the most careful
analysis, and frequently the former can only be discovered after the latter has
been understood. All this Professor Neugebauer has accomplished in a way
little short of miraculous.

As is well known, the methods of Babylonian and Greek mathematical
astronomy are quite different, the former using periodic arithmetical
functions for position, velocity, and time, the latter first deriving an
appropriate geometrical model with suitable parameters, and then using the
model itself for trigonometric computation. But the differences run still
deeper. The very information that one wishes to learn from mathematical
astronomy, which to a great extent determines the invention and application
of techniques, is not the same. The principal goal of Babylonian astronomy is
to answer the question at what fime will a certain characteristic
phenomenon-first or last visibility of the moon or a planet, full moon or
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acronychal rising of a planet, planetary stations, lunar eclipses—take place.
The reason, as we know from texts antedating by hundreds of years the
development of a mathematical astronomy capable of predicting such occur-
rences, is that all these events have value as omens or, in the case of first
visibility of the moon, are of calendarical significance. Greek astronomy, at
least as we have it in the work of Ptolemy, is most frequently concerned with
determining for a given time what position a certain heavenly body will have.
The one important exception to this is the determination of when eclipses of
the sun and moon will take place. In the A/magest, phenomena such as
stations or first and last appearances are treated in a way that allows one to
discover whether at a given time a planet will be direct, stationary or
retrograde, visible or invisible, but not, without considerable difficulty, to
predict when a planet will reach a station or first become visible after
conjunction with the sun. Largely for chronological reasons, it is not clear
whether horoscopic astrology, which is concerned primarily with position and
only secondarily with characteristic phenomena, provided the motivation for
this development or was itself the application of techniques invented for
purely astronomical considerations.

A Greek mathematical astronomy capable of computing positions from a
geometrical model seems to appear at about the time of Hipparchus in the
middle of the second century B.C. Hipparchus, and perhaps some of his
contemporaries (of whom he seems not to have thought very highly),
employed geometrical models possibly invented but certainly worked out in
detail by Apollonius perhaps half a century earlier. Prior to this formative
period between Apollonius and Hipparchus, Greek mathematical astronomy
was primitive by comparison with contemporary Babylonian achievements.
What little we know of it, mostly calendarical cycles and fixed star phases
used for weather prognostication, suggests the same interest in the
determination of time rather than position characteristic of Babylonian
astronomy, although on a far lower level of technical proficiency. Eudoxus’s
purely qualitative spherical models, which could not be used to predict
anything (indeed, it is not clear whether a Greek of the fourth century B.C.
would care to know the position of a planet), Aristarchus’s attempt to
determine the distances of the sun and moon as well as his curious notion
about the motion of the earth, and the strange planetary distances attributed
to Archimedes, seem an exception to this rule, apparently motivated more by
cosmological considerations about the structure of the heavens than by the
more practical applications of mathematical astronomy.

What made the floursihing of Greek astronomy possible in the time of
Hipparchus was not only the geometrical models of Apollonius, but also the
transmission of a substantial body of Babylonian observational records,
numerical parameters, and computational procedures. Although the last was
gradually, but not entirely, replaced by trigonometric computation from
geometrical models, the use of arithmetical constant-difference tabulations
forming linear zigzag functions can still be seen in later Indian, Arabic, and
Byzantine astronomy, all of which are descendents of a Hellenistic science
built upon a foundation carried over from Babylon. In the most sophisticated
development of Greek astronomy, represented first and foremost by Ptolemy,
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Babylonian procedures have all but disappeared, although the use of Baby-
lonian observations and parameters is still prominent. Ptolemy’s methods are
so different from those of Babylonian astronomy that it is difficult to
compare the procedures for finding some one thing, say the longitude of the
moon or the first visibility of Venus, without entering into a detailed analysis
of both astronomical systems. This, of course is what Neugebauer’s history
does. Never before has so thorough an exposition or so penetrating an
analysis of ancient astronomy (or any science?) been brought together.

Not the least part of this accomplishment is the fact that most of the
contents of these three volumes represent the original discoveries and analy-
ses of the author himself in the course of some forty years of research. The
treatment of Babylonian astronomy is based, after the earlier work of Epping
and Kugler, upon Neugebauer’s fundamental publications from 1936-1938,
Astronomical Cuneiform Texts (ACT) [1955], containing full publication of all
sources known at that time, and a series of later articles by himself, A. Sachs,
A. Aaboe, and B. L. van der Waerden, to name the principal investigators of
this subject. The exposition of Greek astronomy, by far the most comprehen-
sive written, comes largely from notes taken over a period of many years, very
little of which has been published previously in any form. It goes without
saying that until the publication of these volumes it has been next to
impossible for a reader to learn as much about ancient astronomy on his own
as he now can through a careful study of Neugebauer’s history.

Perhaps the best way to get some understanding of the content and analysis
of Neugebauer’s work is, drawing from different parts of the history, to
examine the Babylonian and Greek methods of finding the same thing. We
choose for examples the true velocity of the moon and the length of the
synodic month, largely because these are especially suitable to Babylonian
arithmetical functions, but are rather more difficult to determine with the
(essentially modern) computation from a geometrical model used by Ptolemy.

The purpose of Babylonian lunar ephemerides is the prediction of the time
of first visibility of the new moon after conjunction with the sun, for the
evening of first appearance marks the beginning of the month in the civil
calendar. This is in fact difficult to determine, requiring knowledge of solar
velocity and longitude, lunar velocity, longitude, and latitude, and conditions
specific to the location of Babylon, that is, oblique ascension and length of
daylight. A complete lunar ephemeris can contain as many as eighteen
columns each tabulating a different arithmetical function necessary for
solving the apparently simple problem of whether a month will be 29 or 30
days long. Parallax is the only pertinent factor not specifically considered in
the ephemerides, although the parameters chosen for lunar latitude (unknow-
ingly) include, in a rough way, the effect of parallax near the horizon where
the first crescent is visible. The ephemerides fall into two classes, called
System A and System B, characterized initially by the method of tabulating
solar velocity and longitude, and generally by different parameters in all
columns. System A is on the whole the more sophisticated of the two, but we
shall concern ourselves here with System B since, perhaps by the fortuitous
chances of transmission, its parameters have had the greater influence on the
history of astronomy.
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TABLE 1
T F G
[restored] Lunar Length of
Date
Velocity Svnodic Month
Year-Month in °/4 in ° over 294
X [13; 36, 10] {3, 9; 1, 40]
XI [14; 12, 10] [2, 46; 31, 40]
XII [14; 48, 10| [2,24; 1, 40
3,6 I [15;]8 2, 1; 31, 40
11 [14;]32 2,6; 7,30
111 [13; 516 2, 28; 37, 30
v [13; 2]0 2,5[1); 7, 30
A% [12; 44] 3,[13; 317, 30
VI [12; 8] [3,136; 7, 30
VII [11; 32] [3, 518; 37, 30
VIII (TT; 14, T0] 4,21;7, 30
IX [11; 50, 10] [4,]15; 16, 4[0]
X [12; 26, 10] [3, 52; 46, 40]
XI [13; 2, 10] [3, 30; 16, 40]
XII [13; 38, 10] [3, 7; 46, 40]
XII, [14; 14, 10] [2, 45; 16, 40]
3,7 I [ 14; 50, !lO 2, 22; 46, 40
11 [15;]6 2, 0; 16, 40
11 [14;]30 2,7; 22,30
| AY (13;]54 2,29; 52,30
\% [13;]18 2,52; 22,30

Table 1 shows a part of three columns from a System B ephemeris (ACT
121a). The transcription here is highly edited. Numbers in square brackets,
which are broken off or illegible in the original tablet, have been restored,
sexagesimal places have been separated by commas, a semicolon separating
integers from fractions, and headings added giving the significance of each
column. Column T is the date in years of the eastern form of the Seleucid Era
(=310 Apr. 3) and months of the civil calendar indicated by Roman
numerals. Column F gives the lunar velocity in degrees per day for the time
of mean conjunction, and Column G the length of the synodic month over 29
days in degrees of time where one day equals 360°. Thus, sexagesimally,
where 19 = 6, 0° = 24", 50 1,0° = 4" and 1" = 15°.

The structure of columns F and G can best be understood by graphing
them as is done in Figure 1. Except at maximum and minimum, each
succeeding entry has a constant difference & such thatentry (n + 1) = n + d
where d is taken as positive on an ascending branch and negative on a
descending branch. When lines are drawn through a number of entries, they
form alternate ascending and descending branches of what is called a linear
zigzag function, intersecting at fixed maxima and minima which are probably
not among the tabulated entries. When two entries are adjacent to a
boundary, entry (n + 1) will fall as far inside the boundary as n + 4 would
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FiGURE 1

fall outside it, and thus
n+(n+1)=2M —d at maximum,

n+(n+1)=2m+d atminimum,

where M and m are the maximum and minimum values respectively. From
the tabulated entries adjacent to the boundaries, M and m may be found
from

M=i[n+(n+1)+d], m=i[n+(n+1)-d]

We call p = 3(M + m) the mean value and A = M — m the amplitude of
the function. Let the period P be defined as the number of steps (generally
not an integer) of d in one oscillation of the zigzag function. Then

p_28_1

d zZ
where IT and Z are the least integers representing an integral number of steps
I1, called the number period, in an integral number of oscillations Z, called
the wave number. Since II = PZ, after Z periods containing II entries, the
series of entries will repeat. All of these parameters may be derived from the

columns in Table 1, and we give them below:

Fe/d G°
d 0; 36,0 22; 30
m 11; 5,5 1, 52; 34, 35
M 15; 16, 5 4,29; 27,5
m 13; 10, 35 3,11; 0, 50
A 4;11,0 2, 36; 52, 30
I 4,11 _ .. 4,11 _ ..
Z =P S =135640 13; 56, 40
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Note that the periods of the two functions are identical while their
ascending and descending branches on the graph have opposite phases with a
displacement of about one-half an entry, that is, one-half a mean synodic
month between corresponding opposite extrema of F and G. From the
identical periods we conclude that Column G gives the length of the synodic
month as a function of F, the lunar velocity at mean conjunction, that is,
after the completion of the anomalistic month that is less than and contained
by the synodic month falling between conjunctions n — 1 and n. Indeed, both
the differences d and the amplitude A are related by

(d, 8) = 37, 30(d, A) -

Thus, each increment of 0; 36°/¢ in the lunar velocity will produce a change
of 37,30-0; 36° = 22; 30° in the length of the synodic month. Paired
functions of this kind are more common in System A, this being the only
example in System B. The opposite phases of F and G follow from the
obvious consideration that the length of the synodic month varies inversely
with the lunar velocity in the interval after the completion of the anomalistic
month. The displacement of the maxima of G behind the minima of F, which
should be exactly one-half a synodic month but is a little over that, is because
the entry in G for month n gives the length of month n — 1, but to clarify this
we must consider the true function underlying F.

The period of the lunar velocity is the anomalistic month which is less than
the synodic month by about 2 days. Thus, F is in fact the tabulation function
of a true function with a period p equal to the anomalistic month and less
than the synodic month. For F to have its greatest effect on G, either positive
or negative, the opposite extreme of the true function should occur in the
middle of the interval between conjunctions n — 1 and n. Hence the extrema
of F occurring about half a month before the opposite extrema of G. Since
the period p of the anomalistic month is only slightly less than the line
interval 1 of the synodic month, thus

P__P __2A
1 P+1 20+d°
In this way, we find for column F,
L1 _ 41l _ 455596, ...

P41+ 18 4,29
Since the line difference 1 represents the mean synodic month, this tells us
that
251 syn. mo. = 269 anom. mo.,
a relation that is of some interest in that it was later used by Hipparchus and
is noticed, and slightly corrected, by Ptolemy. The mean synodic month of
Column G,
299 3,11;0,50° = 29;31,50,8,20¢ = 299 12;44,3,20

was used without modification by Hipparchus and Ptolemy, is the mean
length of the month in the Jewish calendar, and is found frequently in
medieval astronomical works. The mean lunar velocity of column F,
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13; 10, 35°/4, a fairly crude parameter, is later found in Greek, Indian, and
medieval sources.

Once the parameters of these columns have been derived, computing an
ephemeris for any number of months or years is a simple matter. Given an
initial value n, one forms the sum (n + 1) = n + d, the sign of d depending
upon whether one is on an ascending or descending branch of the zigzag.
Whenever a boundary M or m would be passed, one computes

(n+1)=(2M - d) — n at maximum,
(n+1)=(2m+d)—n at mnimum.

In this way the lunar velocity at the time of mean conjunction and the
corresponding length of the synodic month can easily be found. But thus far
we have considered only the effect of lunar velocity on the month while the
length of the synodic month also depends (directly this time) upon the
velocity of the sun. In order to account for the effect of solar velocity, there
are two further columns, H and J. H is a linear zigzag function with a period
of about one-half a year that is used to form the differences of J, which is
thus a function of constant second differences having a period of one year.
The extrema for J are

= —m = 32; 28, 6°.
The values of J must be added to G, column J indicating whether an entry is
positive or negative, in order to form Column K, that is,

K=G+]J,
and K gives the final corrected length of the synodic month. The extrema for
K are thus

Kpax = Gmax + Jmax = 4, 29; 27, 5° + 32; 28,6° =5, 1; 55, 11°
and
Kiin = Gnin + Jmin = 1, 52; 34, 35° — 32; 28, 6° = 1, 20; 6, 29°.

The ease of computation shows the great advantage of purely arithmetical
procedures since finding these quantities from a geometrical model is
considerably more complicated.

This can be seen by examining Ptolemy’s methods for solving related
problems that occur in Book VI of the A/magest, which is on the computation
of eclipses. Ptolemy never specifically considers either the true length of the
synodic month or the first visibility of the new moon, probably because he
does not use a lunar calendar. However, in computing eclipses it is necessary
to find the true velocity of the moon and sun in order to determine the time
and longitude of true syzygy. Further, in deriving the intervals of ecliptic
syzygies, those at which an eclipse is possible, Ptolemy sets out procedures
sufficient to find the true length of the synodic month if one wishes to do so.

Ptolemy employs two lunar models, a simpler one developed in Book IV
that is accurate only near syzygy and a more complicated model in Book V
that is usable at any elongation of the moon from the sun. Since Book VI is
concerned with eclipses, which are of course restricted to syzygies, Ptolemy
reverts to the simple model of Book IV. This model can be represented in two
forms, eccentric or epicyclic, and here we shall use the epicyclic form which is
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VU N

FIGURE 2
shown in Figure 2. We let the center of the earth be O and draw a circle of

radius R = OC. The center C of the epicycle has moved through the mean
motion in longitude A from A, at the rate © ~ 13; 10, 35°/9, Describe the
epicycle of radius CM = r = 5; 15 where R = 1, 0, and let the moon at M
move through the mean anomaly a measured from the apogee a; in the
direction opposite to the motion of C about O at the rate @ ~ 13; 3, 54°/4,
The equation of the anomaly § is the difference between the mean longitude A
and the true longitude A, that is A = A = . & can be found trigonometrically,
and is tabulated directly by Ptolemy.

FIGURE 3

In Almagest V1, 4 Ptolemy explains how to use this model to find the true
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velocity of the moon in degrees per hour. Figure 3 shows the moon at two
positions of anomaly &, and a, with the corrections 8, and §,. In the interval
between a, and a, the lunar equation will change by

A =8y = i)
Let a, = a; + 1°; then
A = 8(a+10) — Oay-
Since & &~ 0; 32, 40°/", the hourly increment in A will be
A°/M = 0;32,40 A.
Since the mean motion ¢ & 0; 32, 56°/%, the true velocity
v=0%A=0;32 56°/" + A°/h,

(0

FiGURE 4

We shall solve the problem numerically for minimum and maximum
velocity which, as is clear from Figure 2, occur respectively at ay and a;g.
The configuration for a, is shown in Figure 4. To find v, we interpolate in
Ptolemy’s correction table to find & for ay + 0; 30, and find

A=28,—8 = —0;2,30° — (+0; 2, 30°) = —0; 5°.
Thus
A°/h = 0; 32,40 (—0; 5°) = —0; 2, 43, 20°/h,
and
= 0; 32, 56°/% — 0; 2, 43, 20°/" = 0; 30, 12, 40°/h,

Omin
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FIGURE 5
The maximum velocity, at a,gy, is shown in Figure 5. Again finding & by
interpolation for a5, * 0; 30°, we have

A=38,— 8 = +0;3° — (—0; 3°) = +0; 6°.

Now
A°/? = 0; 32,40 (+0; 6°) = 0; 3, 16°/h,
and thus
Omax = 0; 32, 56°/P + 0; 3, 16°/" = 0; 36, 12°/%,

Dividing the corresponding values from column F by 24, we can make the
following comparison to two places:

Velocity Column F Ptolemy
Omin 0; 27, 42°/0 0; 30, 13°/®
0 0; 32, 56 0; 32, 56

v 0; 38, 10 0; 36, 12

max

The zigzag function, as is often the case, has a greater amplitude than the
sinusoidal curve of the trigonometrically derived values following from
Ptolemy’s procedures and parameters.

Ptolemy never specifically takes up the problem of finding the length of
the synodic month as a function of lunar and solar velocity, but he does solve
a somewhat more complex problem in A/magest VI, 6 in finding the number
of synodic months that must elapse between eclipses. His method allows the
determination of the maximum and minimum synodic months as we show
here:
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(0]

FIGURE 6
The configuration for the longest month is shown in Figure 6. Since the
synodic month exceeds the anomalistic month, we let « bisect the arc «, of
the lunar anomaly during the excess, and in this way the moon’s true velocity
during the excess will be the slowest possible. Thus, if we have a true
conjunction at M,, then one mean synodic month later the moon will be at
M, and will not yet have reached true conjunction. In the same way, we
assume that the sun is located near perigee such that a,g, bisects the arc a, of
its anomaly during a mean synodic month so that the sun’s motion will be as
fast as possible. Using Ptolemy’s tables in VI, 3, we find that a,, = 25; 49°
and a, = 29; 6°. Taking half of each, we have }a,~ 12;55° and ja, =
14; 33° on either side of apogee and perigee respectively. From the equation
tables in Books III and IV it follows that
An=208,—-0,=-1;2°-(+1;2°) = —2;4°
and
Ay=68,—06,=+0;38° — (—0; 38°) = +1; 16°.
Therefore
n=4, -8 =—-2;4°—(+1;16°) = —3; 20°

is the elongation of the moon from the sun at the end of one mean synodic
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month. Now, says Ptolemy, assuming for this interval a constant solar and
lunar velocity, we must add 1/127 to 5 to account for the additional motion
of the sun until the moon overtakes it at true conjunction. This appro-
ximation follows from observing that the velocity of the sun is about 1/13 the
velocity of the moon, so that for a given n the moon will reach the sun after
moving
"=q+1/39+ (/B3 n+...=9+1/12n.

In this case true conjunction will occur when the moon has moved 7" = 1; 59
= 3; 36, 40°. Ignoring the change in anomaly while the moon crosses this
interval, we use the moon’s true velocity at M, which we compute by the
previous method to be

v = 0; 32, 56°/" — 0; 2; 32°/* = 0; 30, 24°/®,
and so
3i36,40° _ 5.5 37 53, .n
0; 30, 24°/h
is the excess of the longest month over the mean synodic month. Of course,
the various approximations used in its derivation make any places beyond the

minutes meaningless, and even the minutes are suspect.
S

v
v

FIGURE 7
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The configuration for the shortest month is shown in Figure 7. This time
a,go bisects the lunar anomaly so that the moon’s motion will be as fast as
possible and g bisects the solar anomaly so the sun will move at its slowest
velocity. Now at one mean synodic month after a true conjunction at M, the
moon will have reached M,, having already passed true conjunction. Using
the previous values of a, we now have at a,, = a5y * 12; 55°

A, =08,—8 = +1;14° - (—1; 14°) = +2; 28°
and at a, = ay * 14; 33°
A, =08,—- 8 =—0;34° - (+0; 34°) = —1; 8°.
Thus
n=A4,—-A=2;28°—(-1;8) =3; 36°

is the elongation at the end of one mean synodic month. True conjunction
will have been passed by 7" = 1; 57 = 3; 54°. Since the true lunar velocity at
M, is

v = 0; 32, 56°/" + 0; 2, 54°/* = 0; 35, 50°/™,
therefore

3; 54°

W=6;31,48,50...h

L.
1)
is the deficit of the shortest month from the mean synodic month.
Finally, we add the excess of the longest month and the deficit of the

shortest month to the mean synodic month, and tabulate the values along
with those of Column K converted to standard hours where 1° = 0; 4%,

Month Column K Ptolemy
294 +
m 5; 20, 25, 56" 6; 12, 14, 3®
i 12; 44, 3, 20 12; 44, 3, 20
M 20; 7, 40, 44 19; 51, 41, 13

Again the amplitude of the zigzag function is greater. However, M and m are
extrema that can seldom occur, so in general the differences between the two
computations will be far smaller. It should be noted especially that using the
Almagest procedures to find the length of a particular synodic month is
always as complicated as these examples (although ways to shorten the
computation for purposes of tabulation could be devised) while the
Babylonian ephemerides require only the addition of a few numbers. Clearly
the latter are more suitable to practical use.

The examples given here are, of course, but the smallest fraction of the
subjects treated in Neugebauer’s history. We hope nevertheless through this
fairly technical exposition to have given some idea of the weeks and months
of discovery that await the readers who, in the author’s words, “are willing to
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penetrate the jungle of technical details and become fascinated by the
kaleidoscopic picture which I have tried to unfold here of the history of the
first and oldest natural science”.

One can only hope that a future historian will be able to accomplish as
much when the astronomy of the twentieth century has itself been reduced to
a few odd books and some handfuls of fragments.

N. SWERDLOW
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Examples of groups, by Michael Weinstein, Polygonal Publishing House,
Passaic, N.J., 1977, 307 pp.

“Why study examples?” asks the author as he opens his preface to this
curious volume. Why, indeed. This is a question which I think many of
today’s graduate students and more than a few of their instructors could
ponder profitably. The author gives us three reasons:

(1) to motivate new theorems,

(2) to illustrate and clarify old theorems,

(3) to obtain counterexamples.

While all of this is well put and certainly true, it seems to me that the main
reason for studying examples is simply that we can’t do without them. What,
after all, is a theorem if it is not a simultaneous assertion about some
properties of a large class of examples? What better way to understand what
a theorem says than to apply it to some concrete examples? Everyone appre-
ciates the power and desirability of generalization. Studying examples is just
the reverse process of going from the general to the specific. Mathematics
without examples would become the uninteresting exercise in formal deduc-
tion which it is sometimes mistaken for.

Unfortunately, the study of examples is seldom given the status which it
deserves, particularly in some modern texts, and the present book is an
admirable attempt to rectify this situation, as it pertains to the theory of
discrete groups. How well does it succeed?

The author presents us with a rather long list of specific discrete groups;
finite and infinite, abelian and nonabelian. In each case, a number of
properties are obtained. For example, turning (at random) to p. 194, we see:
“Result 5.11.5. G is not an M, group. Result 5.11.8. G is Hopfian.” There is
also a section of comments (“notes”) following each example (e.g. “G shows
that the class of cohopfian groups is not quotient closed”) and a number of
exercises. The first example appears on p. 101 and is preceded by an entire
section devoted to some abstract construction techniques (e.g. direct, central,
semidirect, and wreathed products) and some elementary facts about free
groups and matrix groups. Additional elementary results appear in a series of
ten appendices. All arguments are given in a very careful and complete
manner, but the price we pay for this is a rather pedantic and heavy style:

“If k is a natural number such that 2 < k, then 2 and k are distinct divisors
of k!, and hence 2k < k!. Also 2 < k implies 1 < k so 1 + k < 2k. Thus
1 + k < k! for all k such that 2 < k.”



