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Let x(t) and y(f) be continuous martingales on the probability space 
(£2, F, P). Consider a bounded region V in R+ with smooth boundary I\ De­
fine rt to be the portion of T along which the outward normal points in the di­
rection of quadrant i (i = 1, 2, 3, 4). Let f(t, s) be a smooth function on p. It 
is desired to evaluate 

jfv f(t,s)dx{s)dy(t) and ƒ J p f(t, s) dy(t)dx(s) 

by Riemann sums in an Ito-belated fashion. The difference between these sums 
is then of the form 

± s /c ; , s;)[x(s'i+1) -*(*;>] w i + i ) -yit't)] 
where (t\9 s/) are points near Y2 and T4. Under suitable conditions on V this 
sum tends to an integral of ƒ along these portions of I\ These considerations 
lead to the following 

THEOREM (THE CORRECTION FORMULA). Let (x(t), y(t)) be a joint mar­
tingale. Then 

jfv f(t, s) dx(s)dy(t) + ƒ f(t, t) dix, y){i) 

= f$vf(t, s)dy(t)dx{s) + J r n | / f c t)d(xfy)(t) 

where (x, y) is the quadratic covariation process ofx and y, and I is the line s = f. 

It is to be noted that the rigorous justification of the Correction Formula 
entails the development of a new type of stochastic integral I(t) = ftog(t, s)dx(s) 
where g(t, s) is measurable with respect to the sigma-field generated by {x(u) -
x(s): s <u <t}. Conditions are given which insure the existence of I(t) as a 
limit of Ito-belated Riemann sums. The following result concerning the moments 
of I(t) is presented. 
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THEOREM. Suppose E(g(t, s)/Fs) = 0, a.s. where F, is the sigma-field gen-
erated by {x(u): t0<u <s}. Then 

E/(0 = ~ f Edsg(t,s)dx(s) Jto 

E|/(0l2 = T E|g(f, s)\2 ds + f f' E3^(f, s)drg(tf r)dx(s)dx(r) 

where ds represents the s-stochastic differential 

As an application of the Correction Formula, consider the linear Ito-Volterra 
equation (see Berger [1]) 

%{t) - ff a(t, s)i(s)dw(s) - f b(t, s)$(s)ds = F®. 

Here w(t) is a Brownian motion. Using the Correction Formula the solution can 
be obtained by a Neumann series, and takes the form 

%{t) = Fit) + V ra{tt s)F(s)dv(s) + r rb(t, s)F(s)ds 

where v(t) = w(t) - Jf
tQa(st s) ds and 

oo oo 

ra(f> *) = Z arSt> *)> rb(?> s) = Z & » k s)> 

ûfjCf, 5) = a(tf s), ^(f, s) = b(t, s), 

**+ifr *) = ƒ, «fr ' X f c s)dw(r)+$s b(t, r)bn(r, s)dr; n = 1, 2, . . . . 

Corollaries of the Correction Formula include a differentiation rule for z(t) 
= A(r, *(>)) where h(t, a) = ƒ/ i//(s, x(s), t, a) dx(s)\ and a formula for evaluating 
ƒ/ y(s)Hn(Sfc2(r) dr, f far) dw(r)) dw(s) where Hn(t, x) is the Hermite polyno­
mial of degree n. There is also included a discussion of stochastic integrals 
ffQx (Ms))dx(s) where X(s) > s. 
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