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groups is summarized . . . ". From a logical point of view, then, the book 
starts from scratch. In actual fact, however, you should either have some 
familiarity with algebraic numbers, cohomology and locally compact groups, 
or be in the presence of someone who does. If not, start with Lang. Otherwise 
there is a chance that you will get bogged down in the machinery. On the 
other hand, if you are ready for the book, and if you master it, you will have 
a complete understanding of class field theory in the modern medium and 
will be ready to approach difficult and active areas of research like the 
arithmetic theory of algebraic groups, modern analytic number theory, and 
nonabelian class field theory. If you are looking for a cohomological devel­
opment of class field theory in introductory book form, then the only feasible 
alternative to Iyanaga is Cassels-Fröhlich. There everything is done in 203 pp. 
Iyanaga takes 400. Some readers will find Cassels-Fröhlich sketchy, others 
will find Iyanaga ponderous. While the definitive text in the modern medium 
remains to be written, and writing it will require enormous effort, even a 
touch of genius, the authors of The theory of numbers are to be thanked and 
congratulated for successfully completing a big task and for enriching the 
literature with a coherent account of class field theory in the modern spirit. 
Needless to say, The theory of numbers should be in the possession of anyone 
interested in algebraic number theory. 
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The distinction between laminar flow and turbulent flow of a fluid is, in the 
first place, a matter of everyday experience. Broadly speaking, laminar flow is 
regular and smooth, while turbulent flow is characterized by the irregularity 
and random nature of the motion. Although the division between these two 
types of flow is not always sharp, and although a precise definition of 
turbulence is difficult to formulate, there is sufficient experimental evidence 
to indicate that the classification of fluid motions into two states, laminar and 
turbulent, is a very good approximation to real behaviour, at least in so far as 
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common fluids under normal conditions are concerned. 
The serious scientific investigation of turbulence begins with the experi­

ments of Reynolds (1883). Apart from many incisive observations concerning 
the nature and effects of turbulent flow in pipes, Reynolds remarks on the 
question of the transition from laminar flow to turbulent flow. He speaks, in 
fact, of the "change" from one state to the other, with the important 
implication that the two states cannot, in general, both occur under a given 
set of conditions. When the conditions are varied, transition from one flow 
state to another may occur; Reynolds suggests, moreover, that the variation 
of conditions can be measured in terms of a single dimensionless parameter 
which combines the speed of the flow, the density and viscosity of the 
fluid and the diameter of the pipe. This parameter is now called the Reynolds 
number. 

In the same classic paper Reynolds poses the question of why and how 
transition from laminar flow to turbulent flow takes place, and he proposes 
an answer, which he attributes to Stokes, in terms of the breakdown of 
stability of the laminar flow. 'The general cause of the change from steady 
[i.e. laminar] to eddying [i.e. turbulent] motion was in 1843 pointed out by 
Professor Stokes, as being that under certain circumstances the steady motion 
becomes unstable, so that an indefinitely small disturbance may lead to a 
change to sinuous motion." Reynolds postulates that the circumstances 
referred to are that the dimensionless parameter, gradually increased, reaches 
a certain critical value at which the laminar flow becomes unstable to 
infinitesimal disturbances. 

Although it is now known that Reynold's postulate is too simplistic to 
explain the onset of turbulence, it has nevertheless become universally accept­
ed that the study of transition from laminar flow to turbulent flow must 
begin with a study of the stability of the former. Since the days of Reynolds 
the understanding of the transition phenomenon has been one of the major 
objectives of fluid-mechanical research, and in this activity the analysis of the 
stability of laminar flows has played a central role. 

The formulation of the problem in mathematical terms is not at all 
difficult. It is not in dispute that the motion of a Newtonian fluid (either 
laminar or turbulent) is described by the Navier-Stokes equations of momen­
tum conservation and the continuity (mass-conservation) equation. For an 
incompressible, viscous fluid these equations are, respectively, 

(1) dU/dt + (£/• V)t/ = - VP + (l/R)V2U 

and 
(2) V t / = 0, 
where U is the velocity vector, P the pressure, R the Reynolds number, and 
where / represents time. Equations (1) and (2) are sufficient to describe simple 
flow situations, but have to be extended when other effects, such as variations 
in density, a magnetic field or heat sources, are present. 

To specify the mathematical problem one generally assumes that the fluid 
is confined within a bounded domain F, on whose boundary dV the velocity 
vector is required to satisfy prescribed conditions. The basic laminar-flow 
state, whose stability is to be examined, is then taken to be represented by a 
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solution U(x), P(x) of equations (1) and (2) which satisfies the boundary 
conditions. Usually, though not necessarily, this solution is supposed to 
depend only on the spatial position vector x and not on the time /. 

A stability analysis of the basic state is achieved by setting 

(3) U = Ü + u(x, t), P = P +p(x, t) 

in (l)-(2) and the boundary conditions. Assuming that the disturbance is 
"switched on" at time t = 0, one is then led to the following initial-
boundary-value problem: to solve in V the equations 

(4) Qu + ( ( / . V)M + ( w . V ) [ / + (w . V ) w = _Vp + 1 V 2 W > 

(5) V -w = 0, 
with 
(6) M = 0 on3F 
and 

(7) u(x, 0) = u0(x) in V. 

The stability of the basic state is determined from the behaviour of the 
solutions (4)-(7) for arbitrary initial disturbance u0(x). More precisely, define 

(8) E{t)=\(\u\2\ £(0)=Kl»o|2>, 
where < • > denotes average with respect to x over V. Then the basic state is 
called stable (more accurately, asymptotically stable in the mean) if E(t) —>0 
as / -» oo for all £(0), unstable if E(t) —> oo as / -» oo for some £(0), and 
conditionally stable if there is a 5 > 0 such that E(t)->0 as f —> oo when 
£(0) < 5. 

Although the problem is easy to formulate, to determine its solution is 
altogether another matter. The major source of difficulty lies in the nonlinear 
character of the equations (4), and it is therefore natural to attempt to make 
progress by linearizing equations (4) through the deletion of the term (u • V)w. 
The linearized stability problem admits solutions of the form 

(9) ***,•(*), i = l , 2 , . . . , o, = a^R ), 

and from these a conditional stability result can be obtained: the basic 
laminar state is stable to sufficiently small initial disturbances if Re a, < 0 for 
all /, and is unstable to an infinitesimal disturbance if Re ot > 0 for some /. 
This important extension of the well-known principle of linearized stability 
for ordinary differential equations was achieved by Prodi (1962), Kirchgâss-
ner and Sorger (1968) and Sattinger (1970). 

The linearized stability problem is a parameter-dependent, linear eigenval­
ue problem. It is required to determine the exponents a, as functions of R 
and, especially, the critical value Rc of R at which the real part of an 
exponent a, first changes from negative to positive as R increases. 

Determination of critical values of R (or of other parameters where 
appropriate) was the main preoccupation of research workers in the field 
during the period 1920-1960. By the end of this period it could be said that a 
satisfactory resolution of the linearized stability problem had been obtained. 
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In certain particular cases the problems involved were solved by and stimulat­
ed the development of powerful techniques of asymptotic analysis. 

The unravelling of the linearized stability problem was a necessary first 
step in the elucidation of the transition process, but it was soon abundantly 
clear that many important questions remained unanswered. As a supposed 
explanation of transition, linearized stability theory has some serious 
deficiencies, of which the following are perhaps the most crucial. 

1. The attainment of the critical value of R is a sufficient condition for the 
onset of instability, but since the linear theory gives a conditional stability 
result for infinitesimally small disturbances it cannot be expected to provide a 
necessary condition for the onset of instability. 

2. It is known from experiments that some flows become unstable at a 
value of R substantially less than the value Rc of linear theory. Presumably 
such flows are stable to infinitesimal disturbances and unstable to some finite 
disturbances. Linearized stability theory cannot predict the onset of insta­
bility in such cases. 

3. To make matters worse, there are certain flows which have no finite 
critical value of R9 even though they are known to change from laminar to 
turbulent at some finite R. Evidently linear theory has no bearing on the 
transition process in these cases. 

4. As equation (9) shows, the linear theory predicts that an unstable 
disturbance grows exponentially without limit. Exponential growth may be an 
adequate description of the behaviour of a disturbance in its incipient stage, 
but it cannot be acceptable as a description of the evolution of the distur­
bance over a period of time. 

Over the past two decades research endeavour in the transition problem 
has been concentrated on attempting to resolve the questions listed above. 
Mathematically this has meant a return to the study of the nonlinear problem 
defined by equations (4)-(7), and the formidable nature of this system has 
necessitated special modes of attack on particular aspects. 

One approach which has met with considerable success has been concer­
ned with the determination of a sufficient condition for stability. Is there a 
value RE, say, of R such that the basic laminar flow is unconditionally stable 
when R < R^ A first attempt to answer this question was made as early as 
1907 by W. Orr, and subsequent contributions were made by several authors. 
The modern approach, however, is due to Serrin (1959), whose pioneering 
work stimulated and laid the basis for important results by others, especially 
D. D. Joseph. 

The computation of a sufficient condition for stability has been called 
energy theory, and it takes its name from the fact that it begins with the 
equation 

00) dE/dt = -<*/• VU-u)-{\/R)(\ Vu\2} 

for the rate of change of the energy of disturbances. (10) is easily derived by 
taking the scalar product of (4) with u, and then effecting the spatial average 
associated with (8). Using Poincaré's inequality one obtains from (10) the 
relation 

(11) dE/dt < { - < w Vf/-w>/<| Vw|>2- \/R}E. 
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If now a number RE is defined by 

( 1 2 ) l / * £ = m a x - < I I . Vf/.t/>/<| Vt/|2>, 

where H is a set of sufficiently-smooth, divergence-free vector functions in F, 
then (12) becomes 

(13) dE/dt < (\/RE - \/R)E. 

It follows that E -> 0 as t -» oo when i? < iî^, which is sufficient for stability 
to all disturbances belonging to the set H. The calculation of RE is a relatively 
easy problem of calculus of variations. 

There are a few configurations in which RE = Rc; in these cases this value 
of the parameter R represents an unconditional boundary between stability 
and instability of the basic laminar flow. In most flow situations, however, 
RE < Rc and the boundary lies somewhere between the two values; in such 
cases the location of the unconditional stability boundary is not known. 
When the difference between Rc and RE is great, the energy-theory result is 
clearly very conservative and its usefulness is consequently diminished. 

Another approach to the nonlinear stability problem concerns itself with 
the evolution of unstable disturbances. It has been pointed out earlier that the 
exponential growth predicted by linear theory cannot be expected to persist 
beyond an early stage. A mechanism whereby nonlinear effects could come 
into play was proposed by Landau (1944). If solutions of the linearized 
stability problem were written in the form 

(14) 4(')<M*) 
rather than in the form (9), then the amplitude function A^i) could be a 
solution of the equation 

(15) dAi/dt = OiA, + fitAf + • • •. 

In this equation a, is the linear stability exponent, and therefore when 
nonlinear terms are neglected (14) and (15) combine to give (9). If, on the 
other hand, nonlinear terms are not ignored, solutions of (15) could evolve to 
new steady states at /-»oo; these might represent solutions of the flow 
equations other than the basic laminar flow. 

Whether or not evolution to a new solution occurs depends on the constant 
/?, in (15). The computation of this constant is a somewhat laborious matter, 
but has been achieved successfully for many different flow problems. 
Landau's equation (15) is appropriate only when loss of stability is due to the 
change of sign of a real eigenvalue; when the sign of the real part of a 
complex eigenvalue changes, a modified version of this equation is required. 

The fact that explicit results could be obtained from an equation of Landau 
type was demonstrated forcefully by Stuart (1960), Palm (1960) and many 
others, subsequently. On the other hand, this approach has been criticized on 
the grounds that it is purely heuristic, that it lacks complete mathematical 
justification and, perhaps most important, that it does not provide a global 
theoretical framework within which the transition problem can be viewed. 
Although these criticisms are all largely valid and although a more rigorous 
theory has evolved over the past few years, there is no doubt that the work of 
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Stuart, Palm, Busse and others in the 1960's contributed a great deal to the 
elucidation of the stability problem. 

The concept that a laminar flow, on losing stability, is replaced 
immediately by a turbulent flow does not usually accord with observation. 
On the contrary, experiments suggest that there are frequently occasions 
when a laminar flow is replaced by another, more complicated, possibly 
time-periodic, laminar flow. As R increases still further, this new flow may 
become unstable and be replaced by yet another laminar flow of an even 
more complicated structure. The really important contribution of Landau 
(1944) was the conjecture that transition to turbulence is a process of repeated 
loss of stability and repeated bifurcation from a laminar state to a more 
complex laminar state. Eventually, presumably, the complexity is such that 
the state which is attained may reasonably be called turbulence. 

Landau's conjecture is not nowadays regarded as providing a satisfactory 
description of the transition process. Nevertheless, the notion of bifurcation 
from one state to another, consequent on the loss of stability of the former, is 
the cornerstone of the modern theory of transition in fluids. Although 
bifurcation theory does not in itself answer all questions, it constitutes an 
impressive mathematical framework which incorporates both linear theory 
and the Landau-equation theory, and which potentially allows a much more 
extensive analysis of the transition problem than has been possible hitherto. 

The book by Joseph under review, a single entity even though published in 
two parts, does not concern itself explicitly with either linear stability theory 
or the heuristic nonlinear theory based on the Landau amplitude equation. It 
concentrates instead on an exposition of bifurcation theory for fluid stability, 
and includes an ample discussion of energy theory. To some extent, more­
over, it is a research monograph; the author has made outstanding 
contributions to both energy theory and bifurcation theory, and much of the 
book is written around these contributions. 

In Chapters 1 and 2 the author provides an excellent introduction to the 
subject. Chapter 1 contains an exposition of the determining equations of 
fluid motion and a statement of the stability problem; the latter is accom­
panied by a discussion of the various stability criteria which can be applied 
and of their significance. In this chapter, too, there is a brief but lucid 
exposition of energy theory and its relation to the question of uniqueness of 
solutions of the equations of motion. 

The key to the book, and the key also to bifurcation theory within the 
transition problem, is to be found in Chapter 2. The essential features of 
bifurcation theory as they relate to the system (4)-(7) may be summarized as 
follows. Note first that as a result of the transformation (3) the basic laminar 
flow appears as the null solution in (4)-(7). Suppose also that this null 
solution loses stability according to linear theory as R increases through Rc. 
Then, in the main, one or another of two possibilities can occur. 

A. The loss of stability is as a result of the change of sign of one real 
eigenvalue o as R increases through Rc. In this case a nontrivial, time-inde­
pendent bifurcating solution emerges from the null solution at R = Rc. 
Depending on the structure of the particular problem this bifurcating solution 
may exist only when R < Rc (subcritical) or only when R > Rc (supercriti-
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cal) or when both R < Rc and R > Rc (two-sided). Whatever the case may 
be, a subcritical bifurcating solution is unstable according to linear theory, 
and a supercritical bifurcating solution is stable. 

B. The loss of stability is as a result of the change of sign of the real part of 
a complex eigenvalue as R increases through Rc. Then a nontrivial periodic 
solution bifurcates from the null solution at R = Rc. This bifurcating 
solution is necessarily one-sided, that is, it exists only when R < Rc or only 
when R > Rc. Moreover, if it is subcritical it is unstable, while if it is 
supercritical it is stable. 

These bifurcation theorems were obtained by Joseph (1971), Sattinger 
(1971) and Joseph and Sattinger (1972), and independently by Yudovich 
(1971) and Iooss (1972). The theorems generalize to the equations of fluid 
mechanics analogous results on bifurcation and stability for systems of 
ordinary differential equations obtained by Hopf (1942). An important 
feature of these bifurcation theorems is that they apply generally to the 
system (4)-(7), and consequently incorporate all specific results obtained for 
particular problems by other methods, such as the Landau equation. 

For the most part the remaining five Chapters of Part I and the seven 
Chapters of Part II are concerned with demonstrating the application of 
bifurcation theory (and, to a lesser extent, energy theory) to particular flow 
situations. Chapters 3 and 4 are devoted to the problem of flow down a pipe 
of annular cross-section. Chapter 3 presents the results of energy theory for 
this problem; insofar as they determine a sufficient condition for stability, 
these results are quite complete, but also quite conservative. Chapter 4 is 
concerned with the application of bifurcation theory. This is one of the most 
difficult and most interesting problems, since here the bifurcating solution is 
periodic and subcritical. Because it is subcritical it is unstable, and this 
suggests the possible existence of another, stable branch of solutions at a 
higher amplitude. This notion is supported by the observational fact that 
disturbances grow at values of R well below i?c, but presumably such 
disturbances must initially be large enough to fall outside the conditional 
limit of linear theory. A mathematical description of such a mechanism has 
not yet been achieved. 

The stability of Couette flow between rotating cylinders, to which Chapter 
5 is devoted, is itself the subject of a considerable literature. The author 
presents a clear and balanced summary of the state of knowledge with regard 
to this problem. 

Chapter 6 is concerned with the stability of a fluid driven down the annular 
region between cylinders which are also rotating and sliding; Chapter 7 treats 
the flow between concentric rotating spheres. Both these problems are 
mathematically extremely complicated and on occasion the underlying ideas 
tend to become submerged in the unavoidable complexity of calculations. 

Part II commences with four Chapters, 8-11, related to various aspects of 
the so-called thermal convection problem. This is primarily concerned with 
the loss of stability associated with the heating of a fluid and the consequent 
variations in its density. In this situation the bifurcating solutions are usually 
time-independent and usually, though not always, one-sided and supercritical. 
(Chapter 10 studies circumstances in which the bifurcation is two-sided.) The 
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supercritical bifurcating solutions are stable, but as the appropriate parameter 
increases they may lose their stability to new bifurcating solutions. This 
possibility, which is not yet fully resolved, is discussed in detail in Chapter 11. 

The remaining three chapters of the book are concerned with special topics. 
Chapter 12 treats the variational theory of turbulence, in which certain 
properties of statistically stationary, possibly turbulent, flow are derived. 
Chapter 13 presents an account of recent advances, mainly due to the author, 
in the stability of viscoelastic fluids. In general the understanding of this 
subject is still in its infancy. Chapter 14 deals with the intriguing topic of the 
stability of interfaces between different fluids. There are, finally, several 
appendices concerned with certain mathematical questions which arise in the 
main text. 

Joseph's book is a well-written and carefully argued account of the current 
state of stability theory for fluid motions. It is comprehensive in its treatment, 
albeit the emphasis reflects the author's interests and contributions. The 
reader will quickly become aware that, although the transition problem is not 
yet solved, great progress has been made during the past decade and the 
possibility of decisive further advances has been uncovered. The fact that 
many researchers are enticed by the fascinating and difficult mathematical 
questions involved in the transition problem is due in no small measure to the 
author's contributions. This book will undoubtedly serve to stimulate more 
exciting mathematical activity in this area. 
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