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In this note, we announce a negative solution to the "dichotomy problem" 
in the context of homogeneous Banach algebras. We begin with the following 
notation. Let A(T) denote the algebra of absolutely convergent Fourier series, 
and let C(T) be the class of all continuous functions on T. Let B be a semi-
simple, self-adjoint Banach algebra with maximal ideal space T. We view B as an 
algebra of continuous functions on T. B will be called homogeneous provided 
the following two properties hold: 

(1) For every A G T , the mapping f(x) —+ fix + a) is an isometry of B 
into itself. 

(2) For every ƒ E B, we have 

lim ll/(x+0)~/(x)llB = O. 

B will be called strongly homogeneous provided we also have 
(3) For every integer k, the operator f(x) —* f(kx) maps B into itself and 

is of norm 1. 
It is well known that only analytic functions operate on ^(T) (see [1] or 

[4, Chapter 6]). Clearly, all continuous functions operate on C(T). We have the 
following "intermediate" result: 

THEOREM 1. There exists a strongly homogeneous Banach algebra B satis­
fying the following two properties: 

(a) ^ ( T ) S ^ S C ( T ) . 
(b) Nonanalytic functions operate on B. 

The question solved by this result arose naturally in the study of the opera­
tional calculus of A(J) (see [1] and Chapter 6 of [4]). For some previous re­
sults related to this question, we refer the reader to [2] where the problem is 
specifically posed, and to [3]. 

We now indicate our construction of B. Let i(/GP, the class of trigonomet­
ric polynomials. An admissible representation for \jj is defined as an expansion of 
t// in the form i// = 2£= 1 ak\J/k, where \}jk E P, and Ili/^IL < 1, 1 < k < n. 
Define 
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1*1 * taf Ç ^ î l o g ( I I ^ I U ( T ) + e2), 

the infimum taken over all admissible representations * ~ ^k-t ak^k* ^ *s n o t 

difficult to verify that II*II is an algebra norm on Pand II*IL < 11*11 < 
3 1 * lA /T y for all * € R Let B denote the completion of P under the norm 
M . 

Then B is a strongly homogeneous Banach algebra on T and A(J) Q B Ç 
0(T). In fact, if * € B, then { *(w)} is in the Lorentz sequence space t2t. 
Property (b) of Theorem 1 is an immediate consequence of the following result: 

THEOREM 2. 

sup O ^ I K c J H ^ e x p C C j I r l 1 ' 2 ) , 
$GB 

it real 
I I ^ I K l 

for \r\ > L Here Cx and C2 are absolute constants. 

The above estimate is obtained by decomposing an admissible representa­
tion for a real trigonometric polynomial in a suitable manner. This permits us to 
exploit the "cancellation" properties of the logarithmic function used in the 
definition of II-L Detailed arguments will appear elsewhere (see [5]). 
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