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"little more than a plaything". The issue was forced by Bertrand's paradox, 
which arose from the fact that the measure is not unique for geometric events 
depending on continuous parameters. Poincaré answered this question neatly 
by requiring the measures to be invariant under a group of transformations. 
In almost all practical cases this defines the measure up to a constant factor. 
Poincaré also realized the importance of the kinematic measure, which 
nowadays is better understood as the Haar measure of a unimodular Lie 
group, and exploited it. 

The basic reason for integral geometry is the presence of a "duality" in 
most spaces. Examples are points and lines in the plane, points and geodesies 
in a Riemannian manifold, points and lattices in R", points and horospheres 
in a symmetric space, etc. The two dual geometric elements are related by a 
notion of incidence. Given a set in space, the measure of the set of dual 
elements incident to it gives an important invariant of the set. The classical 
and simplest example is Crofton's theorem: The measure of the set of lines in 
the plane meeting an arc /?, counted with multiplicities, is equal to twice the 
length of /?. When the same idea is applied to lattices, it gives Siegel's proof of 
Hlawka's solution of a problem of Minkowski on convex bodies. Radon 
treated the problem of determining a function on the noneuclidean plane 
from the integrals of the function over all geodesies. This Radon transform 
was generalized by Fritz John, and later by Helgason, Gelfand, Graev, 
Vilenkin, and most recently by Guillemin. It plays an important role in 
partial differential equations and more general integral operators. 

A natural application is to stereology, which deals with a body of methods 
for the exploration of three-dimensional space when only two-dimensional 
sections through solid bodies or their projections are available. Clearly 
stereology is useful in biology, mineralogy, and metallurgy. Recently the ideas 
and tools of stochastic processes are introduced, bringing the subject back to 
probability theory. 

The strides made in the last four decades are enormous. Integral geometry 
is no longer a mathematical discipline to be ignored. But the subject has still 
the happy character that it is not so well known, thus allowing a steady and 
gentle progress. 

As the first volume of an ambitious encyclopedia, the book sets a style. It is 
a combination of a lucid exposition of the introductory aspects and a 
complete survey of the area. No topic seems to have been left uncovered. 
There is also a very complete, but selective, bibliography. The author handled 
his material with great dexterity and ease. The book should serve as an 
excellent text for a graduate course on integral geometry. The encyclopedia 
and the author are to be congratulated for their success. 

S. S. CHERN 

BULLETIN OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 83, Number 6, November 1977 

Methods of accelerated convergence in nonlinear mechanics, by N. N. Bogolju-
bov, Ju. A. Mitropoliskii and A. M. Samoilenko, Hindustan Publishing 
Corporation, Delhi, India, viii + 291 pp., $27.90. 

(I) The averaging method-or what is so called today-has its origin in 
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celestial mechanics. It was already used by C. F. Gauss when he approxima­
ted the motion of the planets by rigid elliptical rings with an appropriate mass 
distribution and averaged the forces between these planets over these rings. 
The resulting equations describe in first approximation the changes of the 
ellipses under the influence of the perturbation. The later monumental work 
of Poincaré in celestial mechanics contains series expansions which refine the 
averaging method, in the frame work of Hamiltonian mechanics. Only 
considerably later, in 1934, did Krylov and Bogoljubov turn to applying these 
techniques to arbitrary systems which need not be Hamiltonian, and thus 
made the averaging method accessible to the down-to-earth mechanics in 
which some friction is always present, making the equation nonconservative. 
For example, oscillations of nonlinear electric circuits could be successfully 
approximated by the averaging method. 

This method has primarily been useful in the description of periodic 
motions with one predominant frequency. In a later development the work of 
Kolmogorov, Arnold and Moser (KAM) made it possible to construct quasi-
periodic motions for Hamiltonian systems which again play a role in celestial 
mechanics. This construction can also be viewed as intimately related to the 
averaging method, although the corresponding existence proofs are much 
more complicated and subtle than in the case of periodic motions. It is 
natural to ask whether these results can be extended to general systems, just 
as Krylov-Bogoljubov's theory removed the Hamiltonian formalism from the 
averaging method. To do just this is, in principle, the motivation for the 
present book. 

However, it has to be said at the outset that for general systems the 
quasi-periodic motions play a less significant role than periodic motions. 
There is a basic difference between Hamiltonian and dissipative systems. 
While there are open sets of Hamiltonian systems possessing quasi-periodic 
solutions such solutions usually disintegrate under general perturbations. In 
other words, in contrast to periodic solutions, the quasi-periodic solutions 
persist under perturbation only if the class of differential equation is 
sufficiently restricted. This shortcoming can be overcome by considering 
families of systems, depending on a number of parameters which are so 
determined as to force the existence of quasi-periodic solutions. 

To make this remark more precise we describe the type of result to which 
this first chapter is devoted: the authors consider a system 

§ = Hh + F(h9 q>, A) 
(1) * 

J = c o + A+/(/*,(p,A) 

where h = (A„ A2,.. . , hj, <p = (<pl9 <p2 , . . . , <p„), A = (A„ A 2 , . . . , A„), co = 
(coj , . . . , <o„) are vectors, and H an m by m matrix. The vector functions F9f 
are assumed to be small and to have period 2 77 in each <p,, <p2 , . . . , <p„, i.e., the 
latter are angular variables. Thus in the unperturbed situation, for F = 0, 
ƒ = 0, the systems possess h = 0 as an invariant torus T£, on which the 
solutions are given by <pv = uvt + ^(0), if also A = 0. Thus, if the wv are 
rationally independent numbers, these solutions are dense on the torus; they 
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are called quasi-periodic solutions. Moreover, if the eigenvalues of the matrix 
H have negative real parts then all solutions near the torus T$ approach it 
exponentially, i.e., Tfi is asymptotically stable» 

The problem is to study this situation under small perturbation in analogy 
to the perturbation theory of periodic orbits. It is fairly clear that even after a 
small perturbation there exists an asymptotically stable torus Tn near T$. 
This is in fact true, but the induced flow on Tn will in general not be 
quasi-periodic; for example, for n = 2, the flow on T2 will in general possess 
finitely many periodic orbits which are approached by the other solutions on 
T2 for / -> + oo or t -» — oo. This phenomenon is called "entrainment of 
frequencies'*, or the "lock in" phenomenon. 

How can we then have a perturbation theory for the quasi-periodic 
solutions of (1)? The answer is that we use the auxiliary parameters A = 
(A„ . . . , A„) to control the frequencies of the perturbed system to have the 
frequencies co independently of the perturbation. Thus, the result takes the 
form: under appropriate conditions on <*>, H and for sufficiently small F, ƒ 
one can determine the parameters A such that for this choice of A the system 
(1) has an asymptotically stable torus, on which all solutions are quasi-period­
ic with the same frequencies <o as the unperturbed system. 

This result may sound somewhat artificial but, if one asks for a 
perturbation theory of quasi-periodic solutions, this lies in the nature of 
things. For Hamiltonian systems which are nearly integrable the additional 
parameters are automatically present; essentially they are the values of the 
integrals of the unperturbed system. This explains the remark made above 
that the quasi-periodic motions are more significant for Hamiltonian • or 
reversible systems than for general systems where they occur rarely for an 
individual system and therefore one has to consider systems depending on 
several parameters. 

The theory necessary to establish such quasi-periodic solution is formi­
dable. Basically it involves the same apparatus as the previous KAM-theory, 
such as rapidly convergent iteration methods for real analytic systems and 
smoothing techniques for C-systems. The study of the linearized equations 
leads to an analogue of Floquet theory, i.e., linear systems of differential 
equations with quasi-periodic coefficients. The problem is to find coordinate 
transformations with quasi-periodic coefficients which brings the system into 
one with constant coefficients. Unfortunately, no general theory of this 
nature is available and therefore the book, Chapter 5, is concerned with 
perturbation results, and considers systems which are close to those with 
constant coefficients and eigenvalues not on the imaginary axis. The other 
chapters deal with many related questions about the perturbation theory of 
invariant tori, the linearized flow, the differential equations near such 
invariant tori. The technique is based on repeated coordinate transformations 
and rapid iteration methods. This approach is carried out repeatedly, in the 
frame work of real analytic functions and of Cr-functions. 

(II)This may suffice for describing the content and motivation of this book 
which could be summarized by this phrase: small divisor problems for 
non-Hamiltonian systems of differential equations-and we turn to the way in 
which this project is carried out. It is a difficult task to present such 
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complicated and technical material and to the reviewer the exposition is not 
satisfactory, but appears tiresome, repetitive and monotonous. This book is a 
translation of a Russian book which appeared in 1969. Actually Chapter 1 is 
a slightly edited version of 8 lectures given by Bogoljubov in June/July 1963 
at a summer school in Kanev. These lectures were published Kiev 1964 but 
are hardly accessible in the West. The bibliography is, aside from the 
alphabetical ordering, the same as in the Russian original, making the 
references obsolete. The appendix, 18 pages, added to the translation contains 
some references to the recent literature, but this does not suffice to remedy 
this defect. On the other hand, another reference is certainly misleading: in 
paragraph 16 Denjoy's theory concerning diffeomorphisms of the circle is 
discussed. As is well known, this theory establishes that any sufficiently 
smooth circle mapping without periodic points can be mapped by a 
homeomorphism, say h, into a rotation. It has been an open question for a 
long time to find conditions on the rotation number which lead to smooth 
homeomorphisms h. This question was solved only in 1976 in the remarkable 
work of R. Herman (These, Orsay 1976; for an excellent exposition, see P. 
Deligne, Séminaire Bourbaki 477, 1976) which appeared too late to become 
known to the authors. However, the reference to the work of Finzi [20] on p. 
101 is misleading, since his proof is simply wrong. A footnote on the same 
page stating "the validity of this statement remains an open question because 
the derivations in [20] are yet to be proved conclusively" does not really 
clarify the situation* 

This brings us to another shortcoming, the translation from the Russian to 
the English. We illustrate the low quality with few examples (no completeness 
intended). The name of the second author is translated as Mitropoliskii, 
although his name is commonly known in the Western literature as Mitro-
polski, the soft sign being mute. On p. 273 one finds "column" translated as 
"colon"! On p. 123 the paragraph after the statement of Theorem 14 begins 
with the word "Proof", although what follows is merely a remark. The actual 
proof is given only in the following section (21). Incidentally, this error is not 
present in the Russian original. Also on p. 96 the second formula is garbled, 
although the Russian book has it correctly. "Bendixson" appears as "Bendi-
zon," "J. Nash" as "J. Nach", etc. One wonders whether the authors had the 
opportunity to proofread the English version of their book. 

The names of the authors of this monograph bring to mind the well-known 
book Asymptotic methods in the theory of nonlinear oscillations by Bogoljubov 
and Mitropolski, but one has to be aware that these two works are of 
different character. While the old book discusses various asymptotic methods, 
in particular the averaging methods, with emphasis on applications to various 
interesting real problems the present book is of a technical nature. Maybe the 
only common feature is the translation by the Hindustan Publishing 
Company (India) which is equally poor. If one wants to learn about the 
delicate existence proofs for small divisor problems one still does well to read 
the excellent papers in the Uspehi Mat. Nauk by V. I. Arnold. 

JÜRGEN MOSER 


