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0. Introduction. The question of how many solutions there are to the 
classical problem of Plateau has been open for roughly a century. Existence of 
at least one solution was proved in 1931 independently by T. Rado [7] and J. 
Douglas [3]. Courant, in his book Dirichlefs principle, conformai mappings and 
minimal surfaces [2], outlines an argument which suggests that there may exist 
rectifiable curves in R3 bounding on uncountable number of solutions. It has 
been believed for some time that for all sufficiently nice curves there are only a 
finite number of surfaces of mean curvature zero which they bound. In this 
note we state that there exists an open dense set of curves which bound a finite 
number of classical minimal surfaces of the type of the two disc. This result 
essentially is a synthesis of the ideas of [1], [9], [10]. 

1. Formulation of results. Let a: S1 —> Rn be a C°° embedding of S1 in­
to Rn

9 where S1 denotes the boundary of the open disc V in R2. Let Ta = 
a(Sx) denote its image. 

DEFINITION. A classical solution to Plateau's problem for a is a map u 
from V into Rn satisfying the following properties, 

(i) u e C°(D) n C°°(t?), 
(ii) Aw = 0, 
(iii) bu/bx • bu/by = 0 V(x, y) G V, 
(iv) ||3ii/3x|| = ïïbulbyïï V(*. y) e V, 
(v) u: Sl —>Ta homeomorphically. 

REMARK. 1. By well-known regularity results for minimal surfaces first 
proved by Hildebrandt [5], and then later improved by Nitsche [6], Heinz and 
Tomi [4], and Tomi [8], a G C°° implies u G C°°(P). 

Let A denote the space of all C°° embeddings of Sl into R" with the C°° 
topology. 

THEOREM 1. There exists an open and dense subset A0 G A such that for 
all a E A 0 there are only finitely many classical solutions of the Plateau problem. 

REMARK 2. These finitely many surfaces are nondegenerate in the sense 
described in [1]. 
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REMARK 3. There is an //^ Sobolev space version of Theorem 1. As a 
direct corollary of this fact we obtain that for a E A0 the set of solutions are 
differentiable functions of a. This immediately implies the stability of the num­
ber of solutions in A0. 

REMARK 4. The equations in the above definition are invariant under the 
action of the conformai group of p. In Theorem 1 surfaces equivalent under the 
action of this group are identified. 

DEFINITION. A branch point p E V of a minimal surface u is a point where 
u fails to be an immersion. 

THEOREM 2. If a E A0 it bounds no minimal surface with branch points 
on the boundary, and ifn>3 it bounds no minimal surface with boundary or 
interior branch points. 
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