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The purpose of this note is to announce some consequences of lack of torsion 
in H*(£LX', Z) when {X, JJ) is a 1-connected //-space of finite type. Using this hy­
pothesis we can deduce certain restrictions on the occurrence of torsion in the ordi­
nary homology of X as well as in its BP, MUf and K homology. Our motivation for 
this approach comes from finite //-space theory. Certain cases of our restrictions 
or of the absence of torsion in H*(ÇLX\ Z) have been proven for finite //-spaces 
(see [6]) or, at least, for compact Lie groups (see [1], [3] and [7]). Our argu­
ments tie these results together and, furthermore, show that the relations do not 
depend on the finiteness of the spaces involved. 

For the rest of the paper let p be a fixed prime and Qp the integers local­
ized at p. Let H*(X) = H*(X\ Z) ®z Qp. Let (X, ju) be a 1-connected //-space 
of finite type such that H*(Q,X) is torsion free. 

THEOREM 1. H*(X) has no higher p torsion. 

Now BP*(X) is a module over 

A = BP*(pt) = Qp[v19v29 . . . ] (deg vs = 2ps - 2). 

Thus, besides p torsion, we can also speak of vs torsion for s > 1. However, the 
various torsion submodules are interrelated. In particular they are all contained 
in the vx torsion submodule. For let A(l) = A(l/u1) and BP*(X\ A(l)) = 
BPJLX) ®A A(l). 

THEOREM 2. BP*(X; A(l)) is torsion free. 

We can also deduce results about the algebra structure of BP*(X; A(l)). 
Let P and Q denote primitives and indécomposables respectively. 

THEOREM 3. BP*(X; A(l)) is commutative (associative) if, and only if 
H*(X) ®z Q is commutative (associative). When H*(X) ®z Q is an exterior 
algebra then BP*(X\ A(l)) is generated as an algebra by the image of the deloop-
ing map Î2*: Q(BP*(SIX; A(l))) -+P(BP*(X; A(l))). 

Furthermore, it is necessary to localize with respect to vt to obtain these 
types of results. 
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THEOREM 4. BP*(X) is vx torsion free if, and only if H*(X) is torsion 
free. 

Granted the above then the results for bordism and ^-theory follow easily. 
The canonical inclusion A —» Q, = MU*(pi) ®z Qp (see [8] ) enables one to de­
fine £2(1) and MU#(X; fl(l)) by localizing with respect to vt as before. 

THEOREM 5. Theorems 2 ,3, and 4 are true when we replace BP*(X) and 
BP*(X; A(l)) by MU*(X) ®z Qp and MU*(X\ A(l)) respectively. 

The Conner and Floyd relation (see [2] ) can then be used to show 

THEOREM 6. K*(X) ® Qp is torsion free. Also it is.generated as an alge­
bra by Image ft*: Q(K^(ÜX) ®Qp)-*P{K*(X) ® Qp) when #*(X; Q) is an ex­
terior algebra. 

The basic technique used in proving both Theorems 1 and 2 is to study the 
homology of SIX and then pass to the homology of X using an Eilenberg-Moore 
spectral sequence. For details on the above see [4] and [5]. Also, see Pétrie 's 
work in [7]. His results motivated our work in BP, MU, and K homology. 
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