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Entire holomorphic mappings in one and several complex variables, by Phillip 
A. Griffiths, Ann. of Math. Studies, no. 85, Princeton Univ. Press, Prince­
ton, N. J., 1976, x 4- 99 pp., $11.50 (cloth) and $4.50 (paper). 

This little book is based on the fifth set of Hermann Weyl lectures, which 
Phillip Griffiths delivered at the Institute for Advanced Study in the Fall of 
1974. And although the notes, because of their informal nature, have some 
unclear moments they also capture a broad and enthusiastic modern perspec­
tive on a very classical field. 

The history of the subject begins with E. Picard's finding in 1879 that if ƒ is 
a nonconstant entire function of one complex variable, then the range of ƒ 
can omit at most one finite complex number w. This sensational result 
attracted much attention from E. Borel, J. Hadamard, G. Valiron and many 
others around the turn of the century. However, Rolf Nevanlinna's study, Zur 
Theorie der meromorphen Funktionen [21], in 1925 completely revolutionized 
the subject. In this article, he developed his own so-called first and second 
fundamental theorems, which form the basis of all further research in value-
distribution theory. Indeed, as Weyl himself has written (albeit 34 years ago 
[30, p. 8]): 'the appearance of this paper has been one of the few great 
mathematical events in our century.' And within the next few years, Nevan­
linna's brother Frithiof and student Lars Ahlfors had obtained their own 
derivations of the fundamental Nevanlinna theorems. The echoes of these 
techniques (especially those of Ahlfors) reverberate clearly in this book. 

The elegance and depth of this theory have naturally led to attempts to 
obtain analogues for higher dimensions. The general problem is to consider a 
nondegenerate holomorphic mapping 

(1) f:C"^M 

with M a compact complex manifold of dimension m (one can also consider 
more general domains than Cn). Success here, of course, has come more 
slowly; in addition to the bibliographical notes appended to each of the 
chapters in the book under consideration, we refer to [12] for developments 
before 1969 and W. StolPs recent survey article [27]. 

Instead of asking only how many points of M are covered by ƒ and how 
often, situation (1) allows us, in addition, to consider the covering properties 
of any collection Vk of /c-dimensional analytic subobjects. 

(2) VkcM (k < m). 

The first substantial body of results without min(m, n) = 1 in (1) is due to 
Stoll and his associates (cf. [25], [26]), and, in particular, Stoll has obtained 
first and second fundamental theorems which anticipate many of those 
presented in Griffiths' book. 

StolPs proofs (especially of his second fundamental theorem [25]) are based 
on the so-called associated maps of Ahlfors and Weyl [3], [30]. A decade 
later, R. Bott and S. S. Chern introduced a different perspective in these 
matters, and obtained a new first fundamental theorem. Their point of view 
has had a profound influence on Griffiths. 
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The recent work of Griffiths, in association with J. Carlson [8] and J. King 
[19], has given a new and very direct approach to the second fundamental 
theorem in many important situations. This book presents an account of these 
successes in the special case of positive line bundles and m = n in (1), so that 
k = n — i = m — i i n (2). (The methods also apply to the line bundles over 
projective algebraic varieties.) This work has attracted a great deal of interest, 
and made the subject one of intense activity. In particular, the techniques 
introduced work with range M much more general than projective space Pm, 
and also seem relevant in areas of mathematics other than value distribution 
theory. Since there still remain many open problems (the situation for general 
n, m and k in (1) and (2) is not yet settled, even when M — Pn), the 
appearance of this book now is most appropriate. 

According to Griffiths, the notes have three goals. The first is to record the 
successes of [8] and [19] in more permanent form. In addition (goal two) there 
is conscious attempt to show that the algebro-geometric formalisms used in 
the modern theory are natural analogues of what is standard in the so-called 
classical case; i.e. when n = 1 in (1) and M = Pl = C. Finally, the pivotal 
roles that growth and negative curvature play in these matters are strongly 
emphasized. Griffiths has already written several shorter survey articles which 
also touch on these matters (cf. [15], [16], [17]) but this presentation is more 
complete and definitive. 

The book is written in an inviting and pleasant manner, and the author is 
willing to volunteer many insights. However, an interested reader who is 
not sophisticated in complex manifold techniques will find parts very dif­
ficult, although the density of these difficulties decreases as one reads on. The 
texts [11] and [29] and the opening chapter of [19] are given as general 
references for this material, but a few extra lines or references in appropriate 
places could have been very helpful. For example, one of the key techniques 
used by Griffiths is the construction of «-dimensional (pseudo)-volume forms 
and for general M they depend on a potential-theoretic lemma of Kodaira (p. 
17). (Note: for M = Pn, this basic volume form can be explicitly given.) The 
proof of the lemma given here takes but one page with no references, and 
appeals to such concepts as 'standard Kâhler identities' with no further 
citation. The introduction of the dual of the canonical line bundle (in p. 48) is 
likewise unheralded, although this notion is important in as basic a matter as 
the proof of the «-dimensional defect relations. 

The chapters are Order of growth, The appearance of curvature and The 
defect relations. 

Chapter one centers on the first fundamental theorem and associated 
material, and on 'E. BorePs proof of the Picard theorem. The definition of 
7}(L, r), where L is a positive line bundle, appears in p. 18; seven pages later 
we see how this generalizes the Ahlfors-Shimizu form of Nevanlinna's char­
acteristic T{r). The relation between this theory and the classical one is made 
very striking by a very frequent and systematic use here and later of so-called 
Crofton-type formulas; these express many of the «-dimensional integrations 
as the product of a C1 integration with one over Pn~l. In particular the proof 
of the first fundamental theorem (and, in the next chapter, the second 
fundamental theorem) follows from the case n = 1, and aside from a step on 
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p. 60 the Lelong theory of currents is not required here. This method also 
adapts smoothly to obtain some special cases of the Stoll analysis of growth 
of analytic sets. (The use of one-variable methods in this manner goes back 
nearly 40 years. It also plays a key role on Ahlfors' famous article [3].) The 
chapter closes with a slick sketch of the «-dimensional version of Hadamard's 
factorization theorem (due to Stoll and Lelong); this is one of the high spots 
of the book. 

Chapter two starts with a special case of the one-variable second fundamen­
tal theorem. The proof follows from that used for the first fundamental 
theorem once it is known that the range M in (1) is endowed with a metric of 
(strictly) negative curvature. With this as motivation, a study of «-dimen­
sional volume and pseudo-volume forms is made, culminating in a general 
second fundamental theorem at the end of this chapter. The volume forms 
used are those of [8], [19], and one is grateful for the care shown in relating 
these to the spirit of Ahlfors' own now-classical approach [1]. A few dividends 
such as the Schottky-Landau theorem and big Picard theorem are also 
included, and there is an illuminating discussion of the relation between the 
method of negative curvature and the Ahlfors extension of Schwarz's lemma. 

A reader not conversant with these matters may fail to see the full 
importance of the second fundamental theorem in its pregnant form in 
Chapter two. The major applications (defect relations) appear at the outset in 
Chapter three, using the machinery developed in the first two chapters. The 
main application is when M = Pn and our line bundle is the hyperplane 
bundle. 

Even in the classical case, the defect relations are most easily obtained by 
using carefully-chosen volume forms (this is one of Ahlfors' contributions in 
[1]). However, R. Nevanlinna's original proof was based on his celebrated 
'lemma of the logarithmic derivative.' An «-variable version of this lemma is 
obtained here by the method of 'almost negative' curvature; this version 
improves that of [19]. We are next treated to Nevanlinna's original derivation 
of the defect relations, based on the lemma of the logarithmic derivative. 
After a third proof of the defect relations (this one due to Ahlfors), the book 
closes with the more contemporary 'ellipse theorem' of A. Edrei and W. H. J. 
Fuchs (the figure on p. 83 conflicts with this title). The exposition follows that 
in Hayman's text [20], and thus depends on a complicated integral inequality 
of A. Goldberg (a proof which avoids this inequality appears in Lemma 1 of 
[13]). 

There is no discussion of open problems and, almost as a corollary, little 
consideration of the nonequidimensional case in (1). But value distribution 
theory in that setting also has a long history, especially when n = 1 in (1) and 
M = P" (for contemporary accounts cf. [18], [31]). This study was initiated 
by Borel and A. Bloch, before Nevanlinna, who obtained results of Picard 
type. The work of Ahlfors and the Weyls [3], [30] has already been cited, but 
the ideas of H. Cartan [9] should also be mentioned. These are based directly 
on the lemma of the logarithmic derivative, and they play a crucial role in A. 
Vitter's hyperplane defect relations [27] for maps ƒ: Cn -» Pm (m = n is 
covered in this book). There is also no mention of defect relations when the 
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Vk in (2) are nonanalytic, and have instead real dimension r (1 < r < 2m -
1); that such results may exist is suggested by Ahlfors' theory of covering 
surfaces [23, Chapter 13]. 

The book has many minor errors, and some may cause confusion. The 
'O(l) ' in (1.15) and (1.16) does definitely depend on D G \L\9 as the proof of 
(1.15) shows. The (Borel) proof of Picard's theorem presented here in Chapter 
one is less subtle than that given by Borel [4], [5], [6], and depends on the first 
fundamental theorem in an interesting way. There arc several misnumbered 
formulas, references and careless notations. A cluster of these mar the proof 
of the big Picard theorem in Chapter two. 

This book does not attempt to supplant the existing standard texts [14], 
[20], [22], [23], but is a valuable supplement to these and a full introduction to 
a rapidly growing area of activity. It has an up-to-date bibliography, and 
comes at a favorable price. 

I thank B. Shiffman, W. Stoll and A. Weitsman for interesting discussions 
on this material. 
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Fuzzy sets and their applications to cognitive and decision processes, edited by L. 
A. Zadeh, K.-S. Fu, K. Tanaka and M. Shimura, Academic Press, New 
York, 1975, x + 496 pp., $16.00. 

Introduction to the theory of fuzzy subsets. Volume I, by A. Kaufmann 
(Translated from the French edition of 1973), Academic Press, New York, 
1975, xvi + 416 pp., $22.50. 

Applications of fuzzy sets to systems analysis, by C. V. Negoi^a and D. A. 
Ralescu (Revised and translated from the Romanian edition of 1974), 
Birkhâuser Verlag and Halsted Press (Wiley and Sons, Inc.), Basel and New 
York, 1975, 191 pp., $19.75. 

Scientists have long sought ways to use the precision of mathematics to 
tame the imprécisions of the real world. One may see many-valued logic, 
topology, and probability theory as different attempts to be precise about 
imprecision. In 1965, Lotfi Zadeh [1] suggested that the proper tool for 
handling imprecision was to replace the rigid all-or-none of set membership 
by graded membership-so that the characteristic function XA : X "* (0> 0 °f a 

set in the universe X was to be replaced by a membership function XA : X 
-» [0,1] with weights falling in the interval [0,1]. Set operations then generalize 
as follows: 

XAUB(X) = m^lxA(xlxB(x)l XADB(X)
 = ram[xA(x%xB(x)l 

Xj(x) = 1 ~XA(X)-


