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Ordinary differential equations in the complex domain, by Einar Hille, Pure and 
Applied Mathematics Series, John Wiley & Sons, New York, 1976, xi + 
484 pp., $27.95. 

The usual basic concepts and methods for ordinary differential equations 
in the complex domain are explained without going into tedious details. The 
reviewer believes that the readers will be able to familiarize themselves with 
those basics and that this book will be appreciated very much. It is fair to say 
that the interest of the author is more focussed on "Method" than "Intrinsic 
Meaning". 

Through reading, the impression was that of listening to "Grandfather" 
while strolling with him in a quiet cemetary. He talks about good old days 
and beautiful people. In this book Lappo-Danilevskij is still alive, but 
Grothendieck does not exist. The introduction has two parts: Part I is 
"Algebraic and Geometric Structures" and Part II is "Analytical Structures". 
The contents of Part I actually belong to "Functional Analysis". They are not 
algebro-geometric in the sense of Grothendieck-Deligne-Katz (P. Deligne [3]). 
"Analytical Structures" means a collection of traditional basics for functions 
of one complex variable. The concept of analytic continuation is explained, 
but Riemann surfaces are not clearly defined. The resources look very 
meager. What can be accomplished? Indeed, not very much more than 
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talking about various topics. The readers, however, would notice it whenever 
the author starts talking about something special. At such an instance, certain 
concepts and/or methods of higher quality are introduced. For example, in 
Chapter 4 the Nevanlinna theory is introduced. The author, in his 80's, still 
has a tremendous power of organizing research in this area. 

The reviewer would cherish the contents of Chapter 8 very much as legacy 
from the author. This chapter contains also an open question which was 
posed by the author over 50 years ago (p. 291). Oscillation theory, in general, 
is of a highly technical nature. It is known that the author's contribution is 
eminent in this territory. 

The author exhibits "Hypergeometric Euler Transformations" in §§7.3 and 
7.4. For example, (7.3.20)-(7.3.23) on p. 262 show that the periods of an 
elliptic integral satisfy hypergeometric differential equations. Such a period 
can be written as ƒ uz where co2 is a 1-form on a Riemann surface X2 and y2 

is a 1-cycle on X2. The triple (X2, co2, y2\ depending on a complex parameter 
z, is the prototype of the monster created by the algebro-geometric theory of 
linear differential equations with regular singularities (E. Brieskorn [2]). There 
is a global theory due to Ph. A. Griffiths [7], P. Deligne [3] and N. Katz [10], 
[11]. There is also a local theory due to E. Brieskorn [1]. The local theory is 
closely related with the asymptotic analysis of an integral of the form 

where t = (f„ . . . , tk) is a variable in a domain X in C*, f(t) and g(t) are 
analytic in X, y is a singular /c-chain in X and À is a parameter (B. Malgrange 
[13]). 

In the algebro-geometric theory, a system of linear differential equations is 
given by Vu = 0, where V is the covariant differential defined by a com­
pletely integrable connection. This equation is, in general, a completely 
integrable Pfaffian system 

(S) du = J 2 Ak(x) dxk >w, 

where u is an «-vector, x « (xl9. . . , xm) is an independent variable in Cm 

and Ax(x),. . . , Am(x) are n-by-n matrices whose components are functions 
of x. Set co = *2Ak(x) dxk. Then, system (S) is completely integrable if and 
only if rfco = co A w. System (S) is also given the form 

du/dxk = Ak(x)u (k = 1, . . . , m). 

The algebro-geometric theory stimulates the study of Pfaffian systems in the 
complex domain. 

The author of this book collected sufficiently many basics for ordinary 
differential equations. Therefore, it might be interesting for us to translate this 
book into another for Pfaffian systems. Certain results similar to that of 
Frobenius have been already obtained (R. Gérard and A. H. M. Levelt [5], 
M. Yoshida and K. Takano [18]). The reviewer would like to present here 
another "corny" result. (For the meaning of "corny", see E. Hille [0, p. 344].) 

Consider a Pfaffian system 
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(E) XP+I | | = A(x9y)u, y'+* | j - B(x9y)u, 

where u is an «-vector, (x,y) is a variable in C2,p and q are positive integers, 
and A(x,y) and B(x,y) are tf-by-« matrices whose components are holomor-
phic in a neighborhood of (0, 0). Suppose that system (E) is completely 
integrable and that A (0, 0) and B (0, 0) have n distinct eigenvalues, respec­
tively. Then there exists an n-by-n matrix P(x,y) such that (i) components of 
P(x, y) are holomorphic in a neighborhood of (0, 0); (ii) P(0, 0) E GL(AÎ, C); 
(iii) the transformation u = P(x,y)v diagonalizes system (E) (R. Gérard and 
Y. Sibuya [6]). 

The global study of nonlinear Pfaffian systems leads us to a geometric 
theory of differential equations in the complex domain by means of complex 
analytic foliations. Among many activities in this direction are serious 
attempts to find intrinsic geometric meanings of classical results including 
those of P. Painlevé (R. Gérard [4]). The reviewer was told that it was 
Painlevé who originally introduced the concept of foliations into the study of 
differential equations (P. Painlevé [14]). The author of this book certainly 
cherishes the story of those days when Riemann surfaces and differential 
equations were getting along with each other very well. Such a rendezvous is 
now taking place in the algebro-geometric universe. 

The reviewer would like to make a few comments on the Schwarzian 
(Chapter 10). The Schwarzian is also characterized in terms of connection. 
Such a characterization is given in algebro-geometric terms (P. Deligne [3, p. 
33]). There is, however, another characterization which is closer to the 
contents of Chapter 10 (M. Schiffer and N. Hawley [16]). The author exhibits 
the following formula (10.1.9) on p. 376: 

{w,z} - {w,t}(dt/dz)2 + {t,z}, 

where t = t(z) is a change of variable. Schiffer and Hawley [16] define the 
Schwarzian connection through this formula: 

S2(z)dz2 - St{t)dt2 + {t,z}dz2 

(Schiffer and Hawley [16, (14), p. 202]). The Schwarzian connection depends 
on a number of parameters. A conformai mapping and/or uniformization 
can be constructed by specifying values of those parameters. (Those parame­
ters are called accessory parameters.) This guidance would enhance the 
appreciation of the readers who are interested in the contents of §10.2 (p. 
377). 

The result of Schwartz concerning algebraic solutions which enjoys an 
everlasting popularity is explained in §10.3 (p. 383). As the author points out, 
the crucial observation is that all finite subgroups of 2-by-2 matrices are 
known. It is reasonable to surmise that, if one has sufficient knowledge of 
finite subgroups of a group and sufficient knowledge of a monodromy group, 
then the program of Schwartz would work. (See, for example, K. Takano and 
E. Bannai [17].) 

In 1950 and 1956, M. Hukuhara and S. Ohashi [9] obtained a class of 
Riemann's equations whose solutions are all expressible by the use of elemen-
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tary functions and their integrals. In 1969, T. Kimura [12] showed that if 
solutions of Riemann's equation can be expressed in terms of elementary 
functions and their integrals, then the equation belongs to the class of either 
Schwartz or Hukuhara and Ohashi. Riemann's equations mean those 
differential equations whose general solutions are the Riemann P-function (p. 
201). T. Kimura utilized E. R. Kolchin's "Picard-Vessiot theory" in his proof. 

The readers who are interested in the contents of §10.3 would certainly 
enjoy reading the expository paper (on singularities) by E. Brieskorn [2]. 

The Schwarzian connection and quadratic differentials, and hence the 
theory of Teichmüller space, are intimately related. As a matter of fact, the 
contribution of Z. Nehari and the author is unique in this territory (§10.4, 
"Univalence and The Schwarzian", p. 388). As this romance developed, the 
notorious accessory parameters gained a few favor. In particular, see D. A. 
Hejhal [8]. 

The content of §10.5 (p. 394) was rescued by the author from oblivion 
(Preface, p. vii). Yet, she looks still sort of dizzy. The reviewer would like to 
recommend to the readers the little green book of E. G. C. Poole [15] as a 
reference for Chapter 10. 
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Techniques of multivariate calculation, by Roger H. Farrell, Lecture Notes in 
Math., Springer-Verlag, New York, x + 337 pp., $12.30. 

This book is primarily concerned with the mathematical techniques useful 
in calculating the distribution of functions of random matrices X: n X p 
where X has a multivariate normal distribution. As motivation for both this 
review and much of the material in FarrelFs book, I will begin by posing a 
problem and discussing three possible approaches to solving it. Suppose X is 
an n X p random matrix (n > p) and X has a density f(x) with respect to 
Lebesgue measure, /, on the linear space of n X p matrices. Let S = XX = 
r(X) E >p< where Sp is the set of all/? X p nonnegative definite matrices (S is 
positive definite a.e.). The problem is to find the density function of S. 

APPROACH 1. Assume that the density ƒ (X) is a function of S as is the case 
when the elements of X are independent and normal with mean 0 and 
variance 1. Then ƒ (X) = g{XfX) for some function g. Hence, the density of 
S is g(S) with respect to the measure /x = / o T _ 1 on > . All that remains is 
to calculate the measure /x. Wishart did this in 1928 using a geometric 
argument which led to the density bearing his name (in the normal case). Of 
course, fi(dS) = c\S\{n'p~l)/2dS where c is a constant. 

When ƒ is not a function of X'X, then the above argument is not available. 
Two alternative approaches which can be used are now considered. 

APPROACH 2. The group (? (n) of n X n orthogonal matrices acts on the left 
of X by X -» TX, T E £(n). A maximal invariant function under this action 
is T(X) = X'X = S. The density of S with respect to the measure [x given 
above is q where q(r(x)) = ƒ f(Tx)v(dT). Here, v is the invariant probability 
measure on C(n). This result was used by James (1954) to derive an integral 
expression for the density function of the noncentral Wishart distribution in 
the rank 3 case. A result similar to the one above for general compact groups 
is due to Stein and will be discussed subsequently. 

APPROACH 3. Let Gp denote the group of p X p upper triangular matrices 
with positive diagonal elements. Also, let Vnp be the set of n x p matrices ^ 
which satisfy $'$ = Ip. V is called the Stiefel manifold. Each X which has 
rank p (those with rank less than p have Lebesgue measure 0) can be uniquely 
written as X = xpU with ^ E Vnp and U E Gp. Since S = XX = VU, a 
method for finding the density of S is to first find the joint density of \p and U 
and then "integrate out" ^ to yield the marginal density of U. With the 
density of U at hand, the derivation of the density of S is rather routine since 
the Jacobian of the map S<H> U (S = V'U) is easily calculated. To obtain the 


