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I have a friend whom I do not see very often these days. When we manage 
to get together, we talk for hours. The conversation is sometimes relaxed, 
sometimes animated and rarely formal. My friend, I admit, carries most of 
the conversational burden, telling me the latest gossip and retelling old stories 
we both know but enjoy. He doesn't tell me where he picks up his news, and 
credit for some exploits is undoubtedly attributed on occasion to the wrong 
people. Sometimes when he says something clever and no one else is men­
tioned, I figure his mind is the source. He's charming and I never fail to count 
the hours with him well spent. 

So it is with this book. It is charming and the most enjoyable mathematics 
book I have ever read. It is also a scholarly disaster. Ideas and theorems are 
usually unreferenced, leaving the unsophisticated reader to either assume the 
author as progenitor or categorize the result as not important enough for 
attribution (neither alternative will please the individual who first proved the 
theorem or introduced the idea). Occasionally, the author has selected the 
second person to prove a theorem as his reference; this is even more 
reprehensible, as we know how much easier it is to prove a known theorem 
than to do it first. For example this is the case in his failure to cite Mazur [6], 
[7] in a discussion of the generalized Schönflies theorem. The effect of these 
shortcomings is considerable. Just two other examples (selected from many) 
may suffice to give a flavor of the casual style, and demonstrate the author's 
sloppy approach to this aspect of scholarship. 

On p. 116 in the proof of the asphericity of knots in S3, the author says, 
"By a theorem of Whitehead, then, . . . ". He does not say which Whitehead, 
much less which theorem or where to find it. 

On p. 105, Remark 8 gives a certain reference, reproduced as follows in its 
entirety" . . . Martin Gardner's Mathematical Recreations column in the Sci­
entific American." 

These considerations aside, let us consider what knot theory is about. 
Classical knot theory is concerned with the study of embeddings, or place­
ments of a circle in 3-space (or its one point compactification, S3). 

Popular generalizations of this (aCparently) simple situation are to place­
ments of several circles (links) in 3-space, to placements of one or more 
circles in a 3-manifold, and to the embeddings of higher dimensional spheres 
in still higher dimensional spaces. 

Suppose we assume (as the author does) that the embeddings in question 
are tame. This means that the embedded sphere, or knot is a subcomplex of 
some triangulation of the space in which it is embedded. In the classical case 
this simply means the knot is polygonal. 

The fundamental problem in knot theory is that of distinguishing knots. 
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Two knots are the "same" or more formally belong to the same knot type if 
there is a homeomorphism of the containing space which throws one knot 
onto the other. Thus what we really want is a characterization of knot type. 

Consideration of this geometric problem leads to algebra through the 
fundamental group of the complement of the knot in the containing space. 

Let us for simplicity restrict attention to the classical case of a tamely 
embedded circle in 3-space. Denote the knot by k. 

It is a consequence of work of Papakyriakopoulos [10] that the higher 
homotopy groups of the complement of a knot in S3 vanish, so S3 — k is a 
so-called K(m, 1) space whose homotopy type is completely determined by 
ir^S3 — &)-the fundamental group-or what is referred to as the group of the 
knot. Thus as a knot type invariant this group is potentially powerful (but noC 
quite powerful enough, as two different knot types may have complements o / 
the same homotopy type, yet the knots may belong to different types e.g. the 
square knot and granny knot). In passing it may be noted that the homology 
groups of S3 — k are independent of k by Alexander duality. Specifically 
HX(S3 - k) is infinite cyclic, Ht{S3 - k) = 0, / > 1. 

The passage to algebra via the fundamental group has a return trip. In fact 
it is the interplay between geometry and algebra which gives knot theory 
much of its appeal. One return to geometry from algebra is based on what 
might be considered the fundamental theorem of knot theory: If the group of 
a knot is infinite cyclic, then the knot is "unknotted" or "trivial" i.e. it bounds 
an embedded disc. The converse is also true but very simple. The fundamen­
tal theorem is not so simple and is a consequence of the "Dehn Lemma" 
which was not proved until 1957 [10] when Papakyriakopoulos introduced a 
beautiful and novel method of removing singularities. His proof was later 
simplified by Shapiro and Whitehead [12]. (The latter proof is given in 
Rolfsen's book without reference to them.) 

The Dehn Lemma states, (roughly speaking) that a nonsingular curve 
which bounds a singular disc in a 3-manifold, also bounds a nonsingular 
(embedded) disc, provided the singularities of the original disc avoid the 
boundary curve. Proofs of this lemma thus must somehow remove singulari­
ties. 

Assuming the lemma, and a knot k with group infinite cyclic, one may 
prove the fundamental theorem as follows. Note that a nonsingular curve / 
close to k and having linking number 0 with k is homologous to 0. Since such 
a curve is homologous to 0 and HX(S3 - k) is isomorphic to TTX(S3 - k) 
(since TTX is abelian) / is homo topic to 0. As / is homotopic to 0 in S3 — /c, / 
bounds some disc (whose interior may be assumed to avoid /). By the Dehn 
Lemma this disc may be chosen to be nonsingular; since / is close to k this 
disc may be expanded to one bounded by k. Thus the abelian character of the 
group of the knot implies the triviality of the knot. 

There are other geometric conclusions to be drawn from algebraic hypothe­
ses. One of the most beautiful and subtle of these is Stallings' Theorem [13]: 
If the commutator subgroup of a knot group is finitely generated then the 
complement of the knot is a fiber space over a circle. 

This general result was not known in any special case (except the trivial 
one) until Stallings proved it. Rolfsen devotes a number of pages to exhibiting 
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this fibering (pictorially) in the case of an overhand knot, (the simplest 
possible case). 

Returning to the basic problem of distinguishing knot types, there are a 
variety of invariants one may define. In a seminal paper [11] Seifert discussed 
one of great importance; the genus. Since k is a 1-cycle of the first homology 
group of S3, and this group is trivial, k bounds a 2-chain; this 2-chain may be 
assumed to be a nonsingular 2-manifold with boundary k. The smallest genus 
for any such surface with boundary k is called the genus of k. Of course if 
this genus is 0 the knot is trivial, in case it is not we have a positive integer 
invariant of k. In some cases we can compute the genus from the group alone 
(e.g. when the commutator subgroup is finitely generated it is free of rank 
twice the genus [9]) in other cases we cannot. It is, however, always theoreti­
cally possible to calculate the genus from a picture of the knot [14]. 

The genus is connected with a variety of other geometric and algebraic 
knot invariants, through both equalities and inequalities. 

A whole class of invariants are obtained by consideration of branched and 
unbranched (ordinary) covering spaces of 5 3 - k. The most important of 
these are the cyclic coverings. They correspond to subgroups of the knot 
group which are kernels of the mappings of the knot group onto a cyclic 
group. Rolfsen devotes several chapters to these spaces and their invariants. 

The homology groups of these covering spaces, being knot invariants are of 
interest, and the homology of the covering corresponding to the commutator 
subgroup [77,, 77,] is, historically at least, of much interest. Denote this 
covering by X. Since TT , /^ , , TT\] is infinite cyclic, the group of covering 
translations of X is infinite cyclic, and this action subjects the homology of X 
to an action induced by these covering translations. If we let Z denote the 
group of covering translations and J the integers, then HX{X) is a JZ module. 

This module (now called the Alexander module) was studied by Alexander 
[1], Seifert [11], Fox [3] and others. A precise description of the module is 
most easily given by a matrix whose entries lie in 7Z, whose columns 
correspond to generators, and whose rows correspond to relations among the 
generators. It turns out that this matrix is square, and its determinant (which 
annihilates every module element) is the famous Alexander polynomial. Two 
properties characterize this polynomial invariant of a knot; first they take the 
value 1 at 1, second they are symmetric. 

The most important new development in knot theory appears to be the use 
of surgery. This is beautifully described and utilized by Rolfsen. The crucial 
idea in this approach is to remove a solid unknotted tube from S3, then 
replace it ("sew it back") with a twist. If the twisting is not too violent the 
patient will survive, in the sense that the resulting 3-manifold will be again 
S3. However, previously unknotted curves will become knotted! In fact, one 
proves that any knot (in fact any 3-manifold) may be realized by judicious 
selection of tubes and twists in the complement of an unknotted curve. This 
relatively new point of view makes the proofs of standard theorems in the 
subject more understandable and new results more easily attainable. It 
renders certain notions (such as covering spaces and their completions to 
branched coverings) quickly accessible. 

It is difficult to do knot theory and avoid 3-manifold theory, and Rolfsen 



934 BOOK REVIEWS 

devotes a good deal of space to the latter. One particularly nifty exercise asks 
the reader to verify that surgery on a collection of unknotted and simply 
linked tori, performed by giving the ith torus a simple twist of at turns yields 
the lens space L(P, Q) where P/Q has the continued fraction expression 

1 1 1 1 
a . . . # 

a2- a3- an_x - an 

Since this exercise is unreferenced one might assume Rolfsen devised this 
construction. In fact I do not believe he did, as it is referred to in an 
equivalent form in Differential manifolds and quadratic forms, by Hirzebruch. 

The completion of a finite covering of S3 — k to a branched covering 
yields a 3-manifold. In fact, any 3-manifold is a branched cover of a link 
(Alexander [2]). Recently it has been shown by Hilden [4] and Montesinos [8] 
that any 3-manifold is a 3-fold branched covering of some knot. 

Returning to the book itself, there are some good things to be said about it. 
The pictures are marvelous and are usually accompanied by crystal clear 

and concise explanations. 
The proofs, while convincing, generally contain no more detail than pro­

priety requires, and a real attempt is made to provide the idea of the proof. In 
fact, in general the author excels at showing how things are done. It is clear 
he enjoys the process of communicating mathematical ideas. 

Finally a question of taste; his judgement as to what is "remarkable", and 
mine do not coincide. That the range of groups which are the fundamental 
group of the complement of a tame «-sphere in the n + 2 sphere [5] is 
independent of n, for n > 2 does not seem particularly remarkable to me 
though it does to him. That the complement of even one nontrivial knot in 
the 3-sphere fibers over the circle seems remarkable to me but not to him. I 
find the latter result particularly surprising since it can be discovered geomet­
rically and hence was accessible for at least 35 years before it was discovered, 
[13]. 

In the dim past there was an informal system of free distribution of lecture 
notes from courses given at various universities. These did not have the 
imprimature of a publishing house and the price was right, so criticism was 
muted to the point of silence. If now we are to pay ($15 in this case) for 
lecture notes, and if people are going to make a buck on such an enterprise, 
we are entitled to expect a good deal more care in their preparation. 
Misprints (of which there are several dozen), sloppy and awkward writing (of 
which there is a bit), and improper and lazy referencing (of which there is a 
super abundance) are ingredients of a rip off. This book would qualify for 
that characterization were it not for the brilliance of selectivity and obvious 
enthusiasm and skill of the author. The examples in the book are hard to find 
elsewhere, no one other book contains the quantity and timeliness of material 
it presents. I loved reading it, I learned a great deal from it and I recommend 
its purchase by anyone with even a passing interest in low dimensional 
geometric topology. Just be careful when it comes to using it for the purpose 
of kudology. 
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Ordinary differential equations in the complex domain, by Einar Hille, Pure and 
Applied Mathematics Series, John Wiley & Sons, New York, 1976, xi + 
484 pp., $27.95. 

The usual basic concepts and methods for ordinary differential equations 
in the complex domain are explained without going into tedious details. The 
reviewer believes that the readers will be able to familiarize themselves with 
those basics and that this book will be appreciated very much. It is fair to say 
that the interest of the author is more focussed on "Method" than "Intrinsic 
Meaning". 

Through reading, the impression was that of listening to "Grandfather" 
while strolling with him in a quiet cemetary. He talks about good old days 
and beautiful people. In this book Lappo-Danilevskij is still alive, but 
Grothendieck does not exist. The introduction has two parts: Part I is 
"Algebraic and Geometric Structures" and Part II is "Analytical Structures". 
The contents of Part I actually belong to "Functional Analysis". They are not 
algebro-geometric in the sense of Grothendieck-Deligne-Katz (P. Deligne [3]). 
"Analytical Structures" means a collection of traditional basics for functions 
of one complex variable. The concept of analytic continuation is explained, 
but Riemann surfaces are not clearly defined. The resources look very 
meager. What can be accomplished? Indeed, not very much more than 


