A TRUNCATION PROCESS FOR REDUCTIVE GROUPS

BY JAMES ARTHUR¹

Communicated by J. A. Wolf, January 26, 1977

Let G be a reductive group defined over Q. Index the parabolic subgroups defined over Q, which are standard with respect to a minimal $^{(0)}P$, by a partially ordered set \S . Let 0 and 1 denote the least and greatest elements of \S respectively, so that $^{(1)}P$ is G itself. Given $u \in \S$, we let $^{(u)}N$ be the unipotent radical of $^{(u)}P$, $^{(u)}M$ a fixed Levi component, and $^{(u)}A$ the split component of the center of $^{(u)}M$. Following [1, p. 328], we define a map $^{(u)}H$ from $^{(u)}M(A)$ to $^{(u)}a = \text{Hom}(X(^{(u)}M)_{O}, R)$ by

$$e^{\langle \chi, (u)_H(m) \rangle} = |\chi(m)|, \quad \chi \in X(^{(u)}M)_{\mathbb{Q}}, m \in {}^{(u)}M(\mathbb{A}).$$

If K is a maximal compact subgroup of G(A), defined as in [1, p. 328], we extend the definition of (u)H to G(A) by setting

$$^{(u)}H(nmk) = {^{(u)}}H(m), \quad n \in {^{(u)}}N(A), m \in {^{(u)}}M(A), k \in K.$$

Identify ${}^{(0)}\mathfrak{a}$ with its dual space via a fixed positive definite form $\langle \ , \ \rangle$ on ${}^{(0)}\mathfrak{a}$ which is invariant under the restricted Weyl group Ω . This embeds any ${}^{(u)}\mathfrak{a}$ into ${}^{(0)}\mathfrak{a}$ and allows us to regard ${}^{(u)}\Phi$, the simple roots of $({}^{(u)}P, {}^{(u)}A)$, as vectors in ${}^{(0)}\mathfrak{a}$. If $v \leq u$, ${}^{(v)}P \cap {}^{(u)}M$ is a parabolic subgroup of ${}^{(u)}M$, which we denote by ${}^{(v)}_{u}P$ and we use this notation for all the various objects associated with ${}^{(v)}_{u}P$. For example, ${}^{(v)}_{u}\mathfrak{a}$ is the orthogonal complement of ${}^{(u)}\mathfrak{a}$ in ${}^{(v)}\mathfrak{a}$ and ${}^{(v)}\Phi$ is the set of elements $\alpha \in {}^{(v)}\Phi$ which vanish on ${}^{(u)}\mathfrak{a}$.

Let R be the regular representation of G(A) on $L^2(ZG(Q)\backslash G(A))$, where we write Z for $^{(1)}A(R)^0$, the identity component of $^{(1)}A(R)$. Let f be a fixed K-conjugation invariant function in $C_c^{\infty}(Z\backslash G(A))$. Then R(f) is an integral operator whose kernel is

$$K(x, y) = \sum_{\gamma \in G(Q)} f(x^{-1}\gamma y).$$

If u < 1 and $\lambda \in {}^{(u)}\mathfrak{a} \otimes \mathbb{C}$, let $\rho(\lambda)$ be the representation of G(A) obtained by inducing the representation

$$(n, a, m) \longrightarrow_{(u)} R_{\mathrm{disc}}(m) \cdot e^{\langle \lambda, (u) \rangle} H(m)^{\langle \lambda, (u) \rangle}$$

from $^{(u)}P(A)$ to G(A). Here $_{(u)}R_{disc}$ is the subrepresentation of the representation

AMS (MOS) subject classifications (1970). Primary 22E55; Secondary 32N10. 1Sloan Fellow.

of ${}^{(u)}M(A)$ on $L^2({}^{(u)}A(R)^0 \cdot {}^{(u)}M(Q) \setminus {}^{(u)}M(A))$ which decomposes discretely. We can arrange that $\rho(\lambda)$ acts on a fixed Hilbert space ${}^{(u)}H$ of functions on ${}^{(u)}N(A) \cdot {}^{(u)}A(R)^0 \cdot {}^{(u)}M(Q) \setminus G(A)$. If u=1, we take ${}^{(1)}H$ to be the *orthogonal complement* of the cusp forms in the subspace of $L^2(ZG(Q) \setminus G(A))$ which decomposes discretely.

THEOREM 1. There exist orthonormal bases (u) \mathfrak{B} of (u) \mathfrak{H} , $u \in \mathfrak{I}$, such that

$$K_{E}(x, y) = \sum_{u \in \$} \int_{i\{u\}^{\alpha}} \sum_{\phi, \phi' \in (u)^{\alpha}} (\rho(\lambda, f)\phi', \phi) E(\phi, \lambda, x) \overline{E(\phi', \lambda, y)} d|\lambda|$$

converges uniformly for x and y in compact subsets of $ZG(Q)\backslash G(A)$. (Here $E(\phi, \cdot, \cdot)$ is the Eisenstein series associated with ϕ as in [3, Appendix II].) Moreover, $R_{\text{cusp}}(f)$, the restriction of the operator R(f) to the space of cusp forms, is of trace class, and if the Haar measures $d|\lambda|$ on $i_{1}^{(u)}a$ are suitably normalized,

$$\operatorname{tr} R_{\operatorname{cusp}}(f) = \int_{ZG(\mathbf{O})\backslash G(\mathbf{A})} (K(x, x) - K_E(x, x)) \, dx. \quad \Box$$

For any $u \in \mathcal{J}$, let ${}^{(u)}\hat{\Phi}$ be the basis of ${}^{(u)}_1$ a which is dual to ${}^{(u)}\Phi$. We write |u| for the number of elements in ${}^{(u)}\Phi$ or ${}^{(u)}\hat{\Phi}$. Let ${}^{(u)}\hat{\chi}$ be the characteristic function of $\{H \in {}^{(u)}\mathfrak{a} : \langle \mu, H \rangle > 0, \mu \in {}^{(u)}\hat{\Phi}\}$. Fix a point $T \in {}^{(0)}\mathfrak{a}$ such that $\langle \alpha, T \rangle$ is suitably large for each $\alpha \in {}^{(0)}\Phi$. Motivated by the results of [2, §9], we define

$$(\Lambda\phi)(x) = \sum_{u \in \S} (-1)^{|u|} \sum_{\delta \in (u)_{P(Q) \setminus G(Q)}} \int_{(u)_{N(Q) \setminus (u)_{N(A)}}} \phi(n\delta x) dn$$
$$\cdot (u)_{\hat{\chi}}((u)_{H(\delta x)} - T),$$

for any continuous function ϕ on $ZG(Q)\backslash G(A)$. Let $\widetilde{k}^T(x)$ and $\widetilde{k}_E^T(x)$ be the functions obtained by applying Λ to each variable in K(x, y) and $K_E(x, y)$ separately, and then setting x = y. If ϕ is a cusp form, $\Lambda \phi = \phi$. From this it follows that

$$\widetilde{k}^{T}(x) - \widetilde{k}_{E}^{T}(x) = K(x, x) - K_{E}(x, x).$$

THEOREM 2. The functions $\widetilde{k}^T(x)$ and $\widetilde{k}_E^T(x)$ are both integrable over $ZG(\mathbb{Q})\backslash G(\mathbb{A})$, and the integral of $\widetilde{k}_E^T(x)$ equals

$$\begin{split} \sum_{u \in \S} \int_{i_{\{1\}}^{\{u\}_{\mathbf{a}}}} \sum_{\phi, \phi' \in \{u\}_{\Re}} (\rho(\lambda, f) \phi', \phi) \\ \int_{ZG(\mathbf{Q}) \backslash G(\mathbf{A})} \! \Lambda E(\phi, \lambda, x) \cdot \overline{\Lambda E(\phi', \lambda, x)} \, dx \, d|\lambda|. \quad \Box \end{split}$$

It should eventually be possible to calculate the integrals in Theorem 2 by extending the methods of [2, §9]. On the other hand, $\widetilde{k}^T(x)$ is not a natural truncation of K(x, x). This defect is remedied by the following

THEOREM 3. The function

$$k^{T}(x) = \sum_{u \in \S} (-1)^{|u|} \sum_{\delta \in (u) P(Q) \setminus G(Q)} \int_{(u)_{N(A)}} \sum_{\mu \in (u)_{M(Q)}} f(x^{-1} \delta^{-1} \mu n \delta x) dn$$

$$\cdot {}^{(u)}\hat{\chi}({}^{(u)}H(\delta x)-T)$$

is integrable over $ZG(G)\backslash G(A)$. For sufficiently large T, the integrals over $ZG(Q)\backslash G(A)$ of $k^T(x)$ and $\widetilde{k}^T(x)$ are equal. \square

The proofs will appear elsewhere.

REFERENCES

- 1. James Arthur, The Selberg trace formula for groups of F-rank one, Ann. of Math. (2) 100 (1974), 326-385. MR 50 #12920.
- 2. R. P. Langlands, Eisenstein series, Algebraic Groups and Discontinuous Subgroups, (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., Providence, R. I., 1966, 235-252. MR 40 #2784.
- 3. ———, On the functional equations satisfied by Eisenstein series, Lecture Notes in Math., vol. 544, Springer-Verlag, Berlin and New York, 1976.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706

Current address: School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540