FOURIER ANALYSIS ON COMPACT SYMMETRIC SPACE

BY THOMAS O. SHERMAN

Communicated by R. R. Goldberg, November 5, 1976

1. Let $L\supset K$ be Lie groups with complex Lie algebras \mathfrak{l}_c and \mathfrak{k}_c . Assume \mathfrak{k}_c has a linear complement \mathfrak{b} in \mathfrak{l}_c which is a subalgebra. For any σ in LieHom_C(\mathfrak{b} , C) there is a unique germ of a C^ω function e^σ at $s_0:=K$ in S:=L/K such that $e^\sigma(s_0)=1$ and $xe^\sigma=\sigma(x)e^\sigma$ (x in \mathfrak{b}). Now suppose S is connected, K is compact, and e^σ extends to an element of $C^\omega(S)$. Then (Harish-Chandra) $\varphi_\sigma(s):=\int_K e^\sigma(ks)\,dk$ is a spherical function in the sense that

$$\int_K \varphi_{\sigma}(gks) dk = \varphi_{\sigma}(gK)\varphi_{\sigma}(s).$$

For a Riemannian symmetric space of noncompact type Helgason [1], [2] extended Harish-Chandra's spherical transform theory to a Fourier theory in which functions of the form e^{σ} mimic the role of characters in classical Fourier theory on \mathbb{R}^n . Here we report that difficulties inherent in copying these ideas over to compact symmetric space have been overcome, at least for the rank one spaces.

2. Let S:=U/K be symmetric with U compact semisimple. Let G_c be a complexification of U and G a noncompact real form of G_c such that $K_0:=G\cap U$ is open in K, and maximal compact in G. Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{a}+\mathfrak{n}$ be an Iwasawa decomposition and set $\mathfrak{b}:=\mathbf{C}(\mathfrak{a}+\mathfrak{n})$. Then $\mathfrak{g}_c=\mathfrak{k}_c+\mathfrak{b}$ as in §1. A will denote the set of those λ in LieHom_C(\mathfrak{h} , \mathfrak{C}) such that e^{λ} is in $C^{\omega}(S)$. $\Lambda|i$ \mathfrak{a} is the set of highest restricted weights of K-spherical representations of U. For λ in Λ let V_{λ} denote the corresponding irreducible U-submodule of $L^2(S)$. Then e^{λ} is the highest weight vector in V_{λ} . Define τ in LieHom_C(\mathfrak{h} , \mathfrak{C}) by $\tau(x):=\operatorname{tr}(\operatorname{ad} x|\mathfrak{b})$ (x in \mathfrak{b}). Then τ is in Λ .

Lemma 1. There is a unique maximal connected, open, K-invariant neighborhood S_0 of s_0 in S on which $e^{\tau} \neq 0$. Then $e^{\lambda} \neq 0$ on S_0 for all λ in Λ .

On S_0 define $e_*^{\lambda} := (e^{\lambda + \tau})^{-1}$. e_*^{λ} is the inverse transform kernel to e^{λ} . The aforementioned "inherent difficulty" of the subject is the singularity of e_*^{λ} off of S_0 . Let B := K/M where M is the centralizer of $\mathfrak a$ in K.

LEMMA 2. For all uK in S_0 , s in S, and λ in Λ

AMS (MOS) subject classifications (1970). Primary 43A30, 43A85, 42A76, 22E30.

Copyright © 1977, American Mathematical Society

$$\int_{R} e^{\lambda}(k^{-1}s)e_{*}^{\lambda}(k^{-1}uK) dkM = \varphi_{\lambda}(u^{-1}s).$$

PROOF. While this result may be proved directly in the full generality of §1 it follows in the present case by analytic continuation via G_c of the similar result of Helgason on G/K_0 (e.g. middle of p. 116, [1]). [5] contains related analytic continuation arguments and helpful machinery linking U/K and G/K_0 .

Let $L_c^2(S_0) := \{ f \in L^2(S_0) | \text{ supp}(f) \text{ is compact in } S_0 \}$ and let $d_{\lambda} := \dim(V_{\lambda})$. Lemma 2 combines with well-known harmonic analysis on S (see e.g. [3, Chapter 10]) to give

THEOREM 1. For
$$f_1$$
 in $L^2_c(S_0)$ define F_*f_1 on $B \times \Lambda$ by
$$F_*f_1(kM, \lambda) := \int_{S_0} f_1(s) e_*^{\lambda}(k^{-1}s) ds.$$

Then $\Sigma_{\Lambda} d_{\Lambda} \int_{B} F_{*} f_{1}(kM, \lambda) e(k^{-1}s) dkM \longrightarrow f_{1}(s)$ (in $L^{2}(S_{0})$).

THEOREM 2. For f_2 in $L^2(S)$ define Ff_2 on $B \times \Lambda$ by

$$Ff_2(kM, \lambda) := \int_S f_2(s) \operatorname{conj.} (e^{\lambda}(k^{-1}s)) ds.$$

Then $\Sigma_{\Lambda} d_{\lambda} \int_{B} Ff_{2}(kM, \lambda) \operatorname{conj.}(e_{*}^{\lambda}(k^{-1}s)) dkM \longrightarrow f_{2}(s)$ (in $L^{2}(S)$).

THEOREM 3. For f_1 in $L_c^2(S_0)$, f_2 in $L^2(S)$

$$\int_{S_0} f_1(s) \operatorname{conj.}(f_2(s)) ds = \sum_{\Lambda} d_{\Lambda} \int_{B} F_* f_1(b, \lambda) \operatorname{conj.}(F f_2(b, \lambda)) db.$$

3. To extend these results from S_0 to S we must give global definitions of e_* and F_* . This is done for S of rank one as follows. Let λ_1 be the generator (over \mathbf{Z}^+) of Λ . Let $\rho:=\mathrm{Re}(e^{\lambda_1})$ except $\rho:=1$ if $S=P_d(\mathbf{R})$. Then

$$e_*^{\lambda}(s) := (\operatorname{sgn}(\rho(s)))^{1+\dim S} (e^{\lambda+\tau}(s))^{-1}$$
 (s in S).

Where $\mu(s)$ is the distance on S from s_0 to s let

$$S(\alpha, \beta) := \left\{ s \in S | |\rho(s)| \ge \alpha, \, \mu(s) \le -\beta + \sup_{x \in S} \mu(x) \right\}.$$

Then for f in $C^{\infty}(S)$,

$$F_*f(kM, \lambda) := \lim_{\beta \to 0^+} \lim_{\alpha \to 0^+} \int_{S(\alpha,\beta)} f(s) e_*^{\lambda}(k^{-1}s) ds$$

defines a distribution on S, at least for the rank one symmetric spaces, and if we replace S_0 by S and $L_c^2(S_0)$ by $C^{\infty}(S)$ in Theorems 1 and 3 they continue to hold. Theorem 2 may also be made global by carefully defining the order of integration over B. This has been carried out in detail for the sphere in [4].

REFERENCES

1. S. Helgason, A duality for symmetric spaces with applications to group representations, Advances in Math. 5 (1970), 1-154. MR 41 #8587.

- 2. S. Helgason, A duality in integral geometry on symmetric spaces, Proc. U. S.-Japan Seminar in Differential Geometry (Kyoto, 1965), Nippon Hyoronsha, Tokyo, 1966, pp. 37-56. MR 37 #4765.
- 3. ———, Differential geometry and symmetric spaces, Academic Press, New York, 1962. MR 26 #2986.
- 4. T. O. Sherman, Fourier analysis on the sphere, Trans. Amer. Math. Soc. 209 (1975), 1-31.
- 5. R. J. Stanton, Mean convergence of fourier series on compact Lie groups, Trans. Amer. Math. Soc. 218 (1976), 61-87.

DEPARTMENT OF MATHEMATICS, NORTHEASTERN UNIVERSITY, BOSTON, MASSACHUSETTS 02115