COHOMOLOGY OF SUBGROUPS OF FINITE INDEX OF $S L(3, \mathrm{Z})$ AND $S L(4, \mathrm{Z})$
 BY AVNER ASH
 Communicated by Hyman Bass, November 10, 1976

Let $S L(n, \mathbf{Z})(p)$ for $n \geqslant 2$ and $p \geqslant 3$ denote the kernel of the reduction modulo $p: S L(n, \mathbf{Z}) \rightarrow S L(n, \mathbf{Z} / p)$. The integral homology and cohomology of $\operatorname{SL}(3, \mathbf{Z})(3)$ have been entirely computed in [1]. On p. 28 the authors make a conjecture that would imply that $H^{3}(S L(3, \mathbf{Z})(p), \mathbf{Z}) \simeq H_{1}(T / S L(3, \mathbf{Z})(p), \mathbf{Z})$, where T is the Tits building associated to $\operatorname{SL}(3, \mathbf{Q}), \operatorname{SL}(3, \mathbf{Z})(p)$ acts naturally on it, and p is prime. This conjecture is wrong.

Theorem 1. There is a natural surjective map

$$
H^{3}(S L(3, \mathbf{Z})(p), \mathbf{R}) \rightarrow H_{1}(T / S L(3, \mathbf{Z})(p), \mathbf{R}) \oplus\left[H_{1}(X(p), \mathbf{R})\right]^{k}
$$

Here $p \geqslant 3 . X(p)$ is the closed Riemann surface obtained by adding in the cusps to the quotient of the upper half-plane by $\operatorname{SL}(2, \mathrm{Z})(p)$, and k is the number of orbits of maximal parabolic subgroups of $\operatorname{SL}(3, \mathbf{Q})$ under conjugation by $S L(3, Z)(p)$. If p is prime, $k=p^{3}-1$.

Let $h^{i}(A)=\operatorname{dim} H^{i}(A, \mathbf{R})$. Since the euler characteristic of $\operatorname{SL}(3, \mathbf{Z})$ is 0 (for example, see [2]) and $H^{1}(\operatorname{SL}(3, \mathbf{Z})(p), \mathbf{R})=0$ by [3], Theorem 1 also gives a lower bound on $h^{2}(S L(3, Z)(p))$.

My original proof of Theorem 1 was along the lines described below for Theorem 2. With the help of A. Borel, we could prove the natural generalization of Theorem 1 for arithmetic subgroups of any \mathbf{Q}-rank 2 group G. The proof involves the manifold with corners M for G, the Leray spectral sequence for $\partial M \rightarrow$ Tits building (G), and the vanishing of h^{1}.

The kernel of the map in Theorem 1 probably contains only classes which are in the image of the cohomology with compact supports. This kernel in general is nonempty. For instance,

THEOREM 2. $h^{3}(S L(3, Z)(7))>h_{1}(T / S L(3, Z)(7))+k h_{1}(X(7))=5815$.
Similar results could be obtained for other primes. The demonstration of this theorem depends upon the following.

Proposition. Let C be the cone of all $n \times n$ positive-definite symmetric matrices, A be the set of nonzero integral column vectors, and let $K=\{x \in C$: ${ }^{t} a \times a \geqslant 1$ for all a in $\left.A\right\}$.

Let K_{0} be the union of the compact faces of $K . K_{0}$ is $S L(n, \mathbf{Z})$-invariant under the action $(g, x) \mapsto{ }^{t} g x g$, g in $\operatorname{SL}(n, \mathbf{Z}), x$ in C. If Γ is any torsion-free subgroup of finite index of $\operatorname{SL}(n, \mathbf{Z})$ and $n \leqslant 4, K_{0} / \Gamma$ is a deformation retract of С/Г.

I do not know if this stays true for $n \geqslant 5$. The proof is similar to methods in [4] and [5].

The computation of K_{0} for $n=3$ is not difficult given some knowledge of 3-dimensional crystallography, and a description of K_{0} for $n=4$ has been graciously supplied to me by M. I. Stogrin. See also [6] , [7] .

In K_{0}, I have an explicit simplicial complex homotopic to C / Γ. Since C is contractible, I can use it to compute $H(\Gamma)$. Iobtained Theorem 2 by decomposing the corresponding chain complex into $S L(3, \mathrm{Z} / 7)$-invariant subspaces and taking the euler characteristics of invariant complexes, using [8].

For $n=4$, this procedure is already too difficult to carry out by hand, but I can obtain one result:

Theorem 3. If Γ is as in the proposition above, the images of the $\operatorname{SL}(4, \mathbf{R})$-invariant differential forms on $\operatorname{SL}(4, \mathbf{R}) / S O(4, \mathbf{R})$ are zero in

$$
\widetilde{H}^{*}(\Gamma \backslash S L(4, \mathbf{R}) / S O(4, \mathbf{R}), \mathbf{R}),
$$

thought of as de Rham Cohomology.
In view of [9], we can call Theorem 3 an "instability result".

REFERENCES

1. R. Lee and R. H. Czarba, On the homology and cohomology of congruence subgroups, Invent. Math. 33 (1976), 15-53.
2. A. Borel and J. -P. Serre, Corners and arithmetic groups, Comment. Math. Helv. 48 (1973), 436-491. MR 52 \#8337.
3. D. A. Každan, Connection of the dual space of a group with the structure of its closed subgroups, Funkcional Anal. i Priložen 1(1967), 71-74. (Russian) MR 35 \#288.
4. A. Ash, D. Mumford, M. Rapoport and Y. Tai, Smooth compactification of locally symmetric varieties, Math. Sci. Press, Brookline, Mass., 1975.
5. A. Ash, Deformation retracts with lowest possible dimensions of arithmetic quotients of self-adjoint homogeneous cones, Math. Ann. 225 (1977), 69-76.
6. M. I. Štogrin, Locally quasidensest lattice packings of spheres, Dokl. Akad. Nauk SSSR 218 (1974), 62-65 = Soviet Math. Dokl. 15 (1974), 1288-1292. (Russian) MR 50 \#12924.
7. J. Neubüser, H. Wondratschek and R. Būlow, On crystallography in higher dimensions. I, II, III, Acta Cryst. A27 (1971), 517-535.
8. W. Simpson and J. S. Frame, The character tables for $\operatorname{SL}(3, q), \operatorname{SU}\left(3, q^{\mathbf{2}}\right)$, $\operatorname{PSL}(3, q), \operatorname{PSU}\left(3, q^{2}\right)$, Canad. J. Math. 25 (1973), 486-494. MR 49 \#398.
9. A. Borel, Stable real cohomology of arithmetic groups, Ann. Sci. Ecole Norm Sup (4) 7 (1974), 235-272. MR 52 \#8338.

DEPARTMENT OF MATHEMATICS, COLUMBIA UNIVERSITY, NEW YORK, NEW YORK 10027

