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In this paper G is a compact abelian group with ordered dual I'. By this
we mean there is a nontrivial group homomorphism ¢: ' — R where R is the
additive group of real numbers. Let M(G) be the usual convolution algebra of fi-
nite Borel measures on G and ~ the Fourier-Stieltjes transformation.

A measure u € M(G) is said to vanish at infinity in the direction of ¢ if
{7,}7 C T with ¢(7,) — * = (v,) — 0. The subspace consisting of all
measures whose transforms vanish at infinity in the direction of ¢ will be denoted
by M, (G).

Let &, be the identity measure in M(G) and for any integer N, put 8, =
N;8,. The purpose of this note is to announce the following results which
explicate a line of research begun by H. Helson [2] and continued by various
authors in [1], [3], [5], [6], and [7].

THEOREM 1. Let u € M(G) such that the convolution product TI[2 (1 — §,)
EM¢(G). Then u has a decomposition u = u, + u, where u, EMd,(G), M€
Mé(G) and )y (T)C Ny, ..., N, Y IfIL (u—8;) € My(G) then u has a
decomposition p = py + p, where py € My(G), u, € Mé(G) and 1, (I C
{Ny,...,N,}. Here My(G) is the ideal of measures u € M(G) such that ae
Co(M).

The proof of Theorem 1 is obtained by analyzing u, in M(S ) where S is
the structure semigroup of M(G).

Assume ¢ is an isomorphism, P the positive cone and E a Sidon subset of
I'. For any subset 4 of I' put F(4) = {u € M(G): 4 is integer-valued on 4}
and I(4) = {LEM(G): i=0o0r 1 on A}. The following theorem is a conse-
quence of Theorem 1 and is an extension of a result announced by 1. Kessler [3];
see also [4, pp. 206—211].

THEOREM 2. If u € F(I'\—= PU E) then there is a v € F(T) such that i =
b off — PUE. In particular, if p € [\~ PU E) then v € I(T").

Measures such that () = %(y) for all ¥ € P are called semi-idempotents.
A subset R of T is said to be a weak Rajchman set if supp i C R = i € Cy (D).
An easy consequence of Theorem 1 is the following result.
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THEOREM 3. If u € F(T\R) then there is a v € F(T") such that {1 = b off
R. In particular, if u € I(T'\ R) then v € I(T").

For examples of Rajchman sets, the reader is referred to [5]. Proofs of our
results will appear elsewhere.
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