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ABSTRACT. Working within the conformai category, we develop comple­

mentary existence and rigidity theories for periodic minimal surfaces in Kn. 

We will call a compact Riemann surface M periodic if it conformally mini­
mally immerses in a flat three-torus T*3. By lifting to the universal cover of T3, 

these periodic surfaces become the proper triply periodic minimal surfaces in R3. 

We find that the compactness of a minimal surface M in T3 gives rise to re­
strictions on the conformai type of M. Frequently, these conformai restrictions 
give nontrivial geometric information about the lifted minimal surface in R3. For 
this reason, we consider the following fundamental problems: 

(1) Which compact Riemann surfaces are periodic? 

(2) How does the conformai structure of a periodic surface influence its 
geometry? 

Our first result on these questions is that a surface of genus two is never 
periodic. Since every surface of genus two is hyperelliptic, this follows from our 
more general result that a hyperelliptic Riemann surface of even genus is never 
periodic. We also find another family of nonperiodic surfaces: Any nonsingular 
curve of degree four in CP2 fails to be periodic. Thus, the classical Fermât curve 
of degree four in CP2 given in homogeneous coordinates by x4 4- y4 + z4 = 0 
provides a good example of a nonperiodic surface. The techniques of proof used 
here consist of a study of the Gauss map of a minimal surface and the canonical 
curve of a Riemann surface. 

Besides finding conformai obstructions to periodicity, we also begin the 
development of a general existence theory. Much of this existence theory is based 
on our rigidity theorems for periodic and nonperiodic minimal surfaces in R3 and 
on the study of the canonical curve of a Riemann surface. One consequence of 
joining these theories is that we can show the Schwartz diamond surface can be 
joined to its conjugate surface through minimal surfaces in flat three-tori. 

The following is a list of our basic results. 

THEOREM 1. There exists a real 5-dimensional family V of periodic hyper­
elliptic surfaces of genus 3. The surfaces in V are the two-sheeted covers of S2 

branched over 8 antipodal points. 
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Since the minimal surfaces in the family V are embeddings, the following 

result takes on a particular significance. 

THEOREM 2. Iff: M —* T3 is a minimal surface of genus 3, then 

(1) M is hyperelliptic, 

(2) there exist 8 zeroes of Gauss curvature, 

(3) the hyperelliptic automorphism is an isometry and induces an inversion 

symmetry through each zero of Gauss curvature, 

(4) if ƒ: M —* T3 is an embedding, then after translation, the zeroes of 

Gauss curvature are the order 2 points of T3. 

Every compact Riemann surface of genus g has a conformai minimal em­
bedding in a flat 2g-torus which is its Jacobian. Our next result improves this 
property by one dimension. 

THEOREM 3. (1) If the genus g of M is greater than 3, then M will con-

formally minimally immerse fully in a flat 2g - 1 torus. 
(2) A surface of genus 3 will conformally minimally immerse fully in a flat 

5-torus if and only if the surface is hyperelliptic. 

The geometric conditions in the next theorem hold for several classical ex­
amples. By this theorem, these examples give rise to an infinite number of dis­
tinct isometric periodic minimal surfaces. 

THEOREM 4. If f.M—±T3 = R3/Z3 is a minimal surface with the "sym­

metries of a cube" and the conjugate surface is a closed subset of R3, then for a 

dense set of angles 9 E S1, the associate surfaces induce isometric minimal immer­

sions fQ: M —• TQ . Also, the Jacobian of M is isogeneous to a product TQ X 

TQ x TQ x TQ~3 where TQ is a rectangular elliptic curve and g is the genus ofM. 

RIGIDITY THEOREM 5. (1) Proper triply periodic minimal surfaces in R3 

are rigid. 

(2) Compact minimal surfaces in flat 3-tori are not rigid. In fact, there 

exists an isometry of order 8 on the Schwarz crossed layers of parallels surface 

that does not extend to an isometry of its 3-torus. 

FINITENESS THEOREM 6. The number of noncongruent isometric minimal 

immersions of a compact Riemannian manifold into a fixed flat torus is finite. 

By combining geometric arguments with classification theorems of 
Papakyriakopoulos and Waldhausen we get the following "unknottedness" result 
for embedded periodic minimal surfaces in R3. 

THEOREM 7. If the genus of M is greater than 1 and f.M—+T3 is a 
miminal embedding, then M disconnects T3 into two g-holed handlebodies. Thus, 
an embedded periodic minimal surface in R3 disconnects R3 into two diffeo-
morphic regions. 
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ABEL-GAUSS-BONNET THEOREM FOR PERIODIC SURFACES. Iff:M—+ T3 

is a minimal immersion of a surface of genus g, then the Gauss map G: M —> S2 

is a holomorphic g - 1 branched cover ofS2 and 2 « q ET3 is indepen-

dent of PES*. ge° ( P ) 
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