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0. Introduction. The geometry of submanifolds of euclidean space is the 
oldest branch of differential geometry. The subject was the original source of 
most of the classical and modern ideas in the field, and still is the setting in 
which seemingly complicated general phenomena are most easily understood. 
In fact as Allendoerfer [1] once said " . . . an excellent way of discovering 
[theorems] is first to consider an imbedded manifold and then later to invent 
a proof applicable to a general abstract manifold." In fact it is often true that 
a concept which can be defined for submanifolds of Riemannian manifolds 
may be introduced in a simpler and more natural way for submanifolds 
immersed in euclidean space. In this paper we will always try to adopt the 
second course. 

The geometry of hypersurfaces, that is, codimension one immersions, is 
familiar ground to most mathematicians, but once the codimension is in
creased the material is neither as familiar nor as satisfactory. In fact rather 
mysterious concepts appear, such as E. Cartan's exterior orthogonality of a 
linear system of quadratic forms, and C. Allendoerfer's type number. The plan 
of this report is to systematically expose the basic invariants of arbitrary 
codimension immersions in a way we regard as algebraically and geometrical
ly natural. The viewpoints are often not standard. New invariants such as 
curvature deficiency and the rth-trace rank are introduced and applied. Some 
old invariants such as the Allendoerfer type number are given new geometric 
interpretations, and old applications are reexamined and refined. New meth
ods such as the systematic exploitation of the minimal enveloping subspaces 
of linear systems in tensor and exterior products lead to new viewpoints in 
which the Gauss integrability conditions appear as a short exact sequence of 
linear systems. Our viewpoint is both algebraically and geometrically natural, 
the symbiotic effect of this double viewpoint will be illustrated through the 
Allendoerfer theory of type number and some recent results on reducibility of 
immersions. 
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1. Preliminary notations and conventions. In this paper we are interested in 
immersions X: Mm -» Rm+P of m-manifolds into euclidean (m + /?)-space. 

In order to save writing we agree to use the following range of indices 
throughout the paper 

1 < i,j, k < m; m + 1 < a, b, c < m + p; 1 < A, B, C < m + p. 

tangential range normal range full ambient range 

We shall also follow the convention that sums are over repeated indices with 
the ranges omitted where they are understood. 

Let Mm be a Riemannian manifold with Riemannian metric I. If U C Mm 

is an open set then we can introduce a local orthonormal coframe of 1-forms 
{rJ') (1 < j < m) in terms of which I|j/ = 2 (T1) • Such a local coframe 
gives rise to the Levi-Civita connection matrix, which is the matrix of 1-forms 
{4>/} uniquely characterized by the equations 

dr1 = 2 TJ A <>j and </>/ = -<J>j. 

This matrix in turn allows us to define a covariant derivative D defined for all 
tensor fields. 

We will only need D to differentiate functions and 1-forms and content 
ourselves to give the definition for those cases. 

If ƒ: Mm^> R is a real valued function then Df = df G T*(M\ the 
cotangent bundle. The local coefficients {f.} defined by 

(1.1) Mu-Zfi** 
are called the first covariant derivatives relative to the local coframe. 

If w: Mm -> T*{M) is a 1-form locally given by w\v = 2 Ö/T', then D is 
locally defined by Dw\v = 2 a^r* ® rJ G T*(M) ® T*(M) where the local 
coefficients {ai;j} are defined by 

dat - 2 a^\ = 2 ai;Jr
J 

and are called the second covariant derivatives relative to the local coframe. 
We note that, in general, ai;J *£ aJ;i, but in the special case w = df the 

differentiation of (1.1) implies that^. = fj.r 

An important reason for the introduction of the operator D is the following 
formula for the derivative of the metric pairing (w, rj) between two 1-forms w 
and i). If 

w = 2 0/T' a n ( i V = 2 bjTj, 
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then the skew-symmetry of the <̂ / implies 

d{w,y\) = d(2 atbt) = 2 daibi + aidbi 

(1.2) - 2 {dat - 2 ajtjybt + 2 *,(*, - 2 *,*/) 

= (Z)W,TJ) + {w,dt)). 

We will write the length of a 1-form w by ||w|| = (w,w) and note that as a 
consequence of the last equation Dw = 0 implies ||w||-constant. 

We define the Hessian of ƒ relative to I to be the symmetric quadratic 
differential form given by 

ƒ*,(ƒ) = D(df). 

The metric trace of the Hessian defines a second order partial differential 
operator 

A I(/) = T r , ^ I ( / ) = 2 4 -

called the Laplace operator ofl. The fundamental property of this operator is 
given by the Bochner lemma [30, p. 30]. 

LEMMA 1.1. Let Mm be a compact Riemannian manifold without boundary. 
Then Aj ( ƒ ) = 0 implies ƒ = constant. 

Now let X: Mm —» Rm+P be an immersion. This induces a Riemannian 
metric I = dX • dX called the induced metric, where 

l([a]M) = dX°a 
dt 

dX o p 
,=o dt 

f = 0 

defines the bilinear pairing for tangent vectors with representative curves a 
and/?. 

Now if we view the frame bundle of Rm+P as a group defined up to right 
translations, then the Mauer-Cartan equations induce equations called the 
structure equations of E. Cartan. If X is the position vector of Rm+P and 
(ex>... ,em+p) is a local family of orthonormal frames, then the structure 
equations define 1-forms rA and <£>ƒ via 

(1.3) dX = ^rAeA and deA = % <f>$eB. 

This implies $% = ~<j>$ and the integrability conditions 

(1.4) drA = 2 rB A ^ and d$B
A = 2 <>A A 4>C-

A good discussion of these equations may be found in [25, Vols. 2, 4]. 
By restricting X to the position vector of an immersion X: Mm -> Rm+p and 

(ex,..., em+p) to local families of orthonormal frames with ely . . . , em tangent 
to M„ we have 
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(1.5) rm+1 = O, . . ., 7m+p = 0. 

This implies that the induced metric is locally given by I = 2 (T1) and 

drl = 2 TJ A 0J with </>/ = -<f>j, 

and hence that these 1-forms <f>/ define the Levi-Civita connection matrix. The 
components <j>j = ^T/kT

k are known as the Christoffel symbols. The curvature 
matrix of this connection is defined by 

The components 

e/ = 2 J&** A T' 

define the Riemann curvature tensor. 
The restrictions of the structure equations yield equations associated with 

the following classical names: 
The Gauss equations: 

<*!>/ = 2 <J>f A <K + 2 # A 4>î; 

or equivalently, 0/ = - 2 <t>f A tf ; 
7%e Codazzi-Mainardi equations: 

7%e Weingarten equations: 

In addition the curvature matrix satisfies integrability conditions resulting 
from differentiation of the restrictions of the structure equations. These are: 

First Bianchi identity: 

2 rj A ej = 0; 

Second Bianchi identity: 

d®/ + 2 ®r A ** - 2 ** A 0 / = 0. 

In particular we have the following symmetry of the Riemann tensor: 

R{kl = Rkij' 

2. The vector valued second fundamental form. If we let A E Rm+P
9 then the 

position vector of an immersion X: Mm -» Rm+P allows us to define a real 
valued function by X • A. This function is called the height function in the 
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direction A. The Hessians of these functions characterize a normal vector 
valued quadratic differential form II via 

HY{X • A) = II A for all A S Rm+P. 

In order to see that the range of II is normal vector valued we will explicitly 
compute the Hessian. 

Since the structure equations give 

d(X • A) = 2 ei • AT1 

and 

d(ex-A) - 2 «, • A*{ - 2 ^ ' i<*?, 

we are led to introduce coefficients 

where necessarily 

since they are the coefficients of the Hessian of a function. Matters being so, 

ii - 2 *? ® r' (8) e6 = 2 AJT' ® T7 ® «fc e r* ® r* ® iv, 

which is a normal vector valued quadratic differential form. 
Intuitively, II controls the convexity properties of the submanifold since it 

contains all information on the second derivatives of height functions. In order 
to see this more precisely we follow [13] and let a: R -» M be a curve 
parameterized by arc length a and having tangent vector T on M. If we choose 
local orthonormal frames with ex = T and compute the first curvature K and 
the first normal N of X o a\ R -> Rm+P, then 

KN = d2/da2(X o a) = (el9dex) 

- <*!, 2 Hej + 2 tf ea> - 2 Itfe, 4- 2 *iV«-

The term 2 tf\ ^ = 0 if and only if the curve a is a geodesic, in which case 
we have the simple geometric statement 

(2.1) KN = II (el9ex). 

We remark that those directions z with II (z, z) = 0 are called asymptotic 
directions. 

A basic pointwise algebraic invariant of II is the rank r defined for u E M 
by 

r(u) = m + p - dim{^|II («) • A = 0}. 
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Now recalling that the first osculating space of M at u, denoted by 0„, is the 
vector space generated by all first normals to curves lying in M, and that every 
unit vector tangent to M at u can be realized as the tangent vector to a 
geodesic, we see that (2.1) implies dim Ox

u = m + r(u). 
One of the simplest geometric properties that II detects is whether the 

immersion is substantial [19, p. 212], that is, the image X(Mm) does not lie in 
asubplaneof Rm+P. 

PROPOSITION 2.1. Let X: Mm -> Rm+P be an immersion and let A E Rm+P be 
normal at a point X{u). Then X(Mm) lies in a hyperplane perpendicular to A if 
and only if 11 A = 0 . 

PROOF. If X(Mm) lies in a hyperplane perpendicular to A, then A is 
perpendicular to every osculating space and hence II • 4̂ = 0 . Conversely if 

0 = II . A = H^X • A) = D(d(X • A)\ 

then equation (1.2) implies \\d(X • A)\\ = constant. Now since A is normal at 
u, 

d(X • A) = 2 et, • Arl = 0 

at u, and hence d(X • A) = 0 identically. As such we have X • A = constant, 
which implies that X{Mm) lies in a hyperplane with normal direction parallel 
t o ^ . 

The condition that there exists a point u such that A is normal at X(u) is 
necessary, since A might be a direction which is always tangent. This would 
happen for example if a translate of A were contained in the image X(Mm). 
This condition is automatically satisfied, however, if Mm is compact without 
boundary. In order to see this let A E Rm+P ; then there is at least one point 
where the height function X • A has a critical point. At such a point 
0 = d(X -A) = ^ et - AT1 and hence A is normal. 

We may globalize the notion of osculating space to get the minimal 
enveloping space S(MW), which is the linear subspace of Rm+P generated as the 
union of the translates to the origin of all the first osculating spaces. Thus by 
abuse of notation 

S(JV/J= \Judu-

This terminology is justified since A is perpendicular to &(Mm) if and only if 
A is everywhere normal to X(Mm) and II • A = 0. Hence the last Proposition 
implies that X{Mm) is contained substantially in a translate of S(Mm). 

In case the manifold Mm is compact without boundary, it is much easier to 
characterize substantial immersions. 

The basic invariant needed is the metric trace of II, which is the normal 
vector field 

H = tr, II = 2 Kea 

called the mean curvature field. 
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Since II • A = HY(X • A) we have the analytical interpretation of the mean 
curvature field that 

HA= ^(X-A). 

In particular the Bochner Lemma immediately implies the following proposi
tion. 

PROPOSITION 2.2. Let X: Mm -* Rm+P be an immersion of a compact Mm 

without boundary and let A E Rm+P. Then X(Mm) lies in a hyperplane perpen
dicular to A if and only if H A = 0. 

As a result S(Mm) = {A\H • A = 0} for Mm compact without boundary. 
We will not give a systematic report on the properties and applications of 

H. The interested reader is referred to [9]. 

3. Subspaces of tensor and exterior products. Let V be an m-dimensional and 
W an n-dimensional vector space over a field K, and let £ C V ®KW be an r-
dimensional subspace. The subspace £ defines unique subspaces Ke of V and 
Wt of W, called the minimal enveloping subspaces of £> which are characterized 
by their minimality with respect to the inclusions £ C F £ ® Wt Q V ® W. 

The existence and uniqueness of these minimal enveloping subspaces will be 
systematically exploited in the algebraic analysis of the vector valued second 
fundamental form and in the study of the Gauss equations. As such this 
section is devoted to a short report on the foundations of this concept. 

Let v* E F* be a linear functional on V. Then v* may be extended to a 
linear map 

v*J: V® W'-» W 

by covering the bilinear map 

v*(v,w) = v*(v)w9 v E V, w E W. 

Analogously w* E W may be extended to a linear map w* J: V (8) W -> V. 

PROPOSITION 3.1. The minimal enveloping subspaces of £ Q V ® W are 
realized by 

Vt = {w* J£|w* E W*} and Wt = {I/*J£|I/* E F*}. 

PROOF. Let {^} be a basis of V, {ea} a basis of W and {1^} a basis for £. 
Then writing \A = 2 «if ® ea = 2 Ĵ  ® H£ we see that the above definitions 
become 

Ke = {!/?} and Wt = {wa
A). 

If £ C KÊ ® fFe as described here, then the factors are certainly minimal. 
In order to see the inclusion we choose the above bases so that fx, . . . , fs is a 
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basis of KÊ and ex, . . . , er is a basis of Wt. Now let {f*} be the dual basis of 
K* and {e*a} be the dual basis of W\ 

Since the canonical bilinear pairing 

</;®<,e> = o 
for (s + 1 < a < m91 < a < n) and for (1 < a < m,r + 1 < a < n) we 
see that 

ec ({F£® ^V)"1 = vt^>wt. 
Using duality we can give a second description of the minimal enveloping 

subspaces by 

Vt « {t,* e K>*je = 0}x and JKe » {w* E JK>*J£ - 0 } x . 

Now let r G V %W and let £ be the 1-dimensional vector space generated 
by T, If we write T as a minimal length sum of monomials 

T = 2 *>/ ® w,., v, E F, w. E JK, 

then necessarily {̂ } are linearly independent and {wj are linearly independent. 
Hence 

dim K£ = dimfy} = dimfy} = dim Wt. 

This common integer is called the rank of the tensor T [7]. 
A refinement of these notions arises when a subspace £ is contained in an 

exterior power of a vector space £ C Ap V. 
Again the subspace £ defines a unique minimal enveloping subspace Ke of 

V characterized by minimality with respect to the inclusions 

£ C KpVt Q APV. 

If v* is a linear functional on K, then v* may be extended to a unique linear 
mapping 

v*J: ApV^Ap'lV, 

characterized on monomials by the antiderivation rule 

v* J(x{ A • • • A xp) 

= 2 ( - l / " (Xj9V*}xx A ••• A x ^ A *;+! A ••• A xp. 

Now by using the duality theory of exterior algebras or by applying a general 
result [26, p. 29] one easily sees that Ke has the simple description 

Ke = {i>* E K V J 6 - O } 1 . 
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The principal application of these ideas will be to the analysis of bilinear 
mappings b: V X V -> W. Such a mapping defines an element 

b (EV* ®V* ®Wy 

which may be assigned two different tensor ranks. 
The first rank which we write rank^ b and call the target rank, is obtained 

by viewing b E {V* <8> V*) <8> W. 
The second rank, which we write rankK6 and call the source rank, is 

obtained by viewing b E V* <8> {V* <8> W). 
A bilinear mapping b: V X V -» W is said to have no left conjugate space if 

(3.1) b{u,v) = 0 for all v E K implies u = 0. 

If we introduce the linear system 

/ = {b(;v)\v E V) C (K* (8) 1*0* C V* (8) W, 

then statement (3.1) holds if and only if wj/ = 0 implies u = 0, and this holds 
if and only if uAl = 0 implies t/JK*; = 0. Hence b has no left conjugate space 
if and only if V* = V*. A symmetric bilinear map with no left and hence no 
right conjugate space is called essential 

4. Invariants of the second fundamental form. We have seen that the second 
fundamental form II is a normal vector valued quadratic differential form and 
hence gives rise to symmetric bilinear mappings 

II (II): TUXTU-*NU. 

Applying the results of the last section we see that H(w) has two tensor ranks 
and several associated enveloping spaces. 

The target rank dim^ II is obtained by viewing 

II (u) = 2 T'' ® TJ ® h\eh E ( r* (8) T*) (8) N, 

and hence 

dim^ II (u) = d im{2 h\eb) 

= m+p - dim{^|II (u) • A = 0} = r(u). 

Thus the target rank is the integer we previously called the rank of II. 
The source rank d im r II is obtained by viewing 

II (w) = 2 4>? ® T1 0 eb E r* <8> ( r* (8) AT), 

and hence, 

d i m r I I (u) = dimfaf}. 

We define the dual dimension of M at a point u to be the source rank dim{<j>f}, 
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and will denote this integer by s(u). The reason for this nomenclature will be 
exhibited in the next section where we give s(u) a geometric interpretation. The 
complementary dimension m - s is known as the index of relative nullity [13, 
p. 425]. 

If we view II E (T* $ T*) ® N, then there are two minimal enveloping 
subspaces, characterized by their minimality with respect to the inclusion 
II E (T* ® T*) ® Nu. In order to save writing we introduce the notation 

e = ( r ® r )n 

which is the linear system of quadratic forms 

£ = {2 \b II*} for ^ E R. 

On the other hand if we view II E T* <S> (T* ® iV), then there are two more 
minimal enveloping subspaces characterized by their minimality with respect 
to the inclusion II E T ® (T* ® TV) . Again to save writing we introduce 
the notation 

<& = (r*<8> TV)", 

which is the linear system of tensors 

$ = (2 ft*? ® **}, ft ^ /i. 

Since £ C T* <g> T* and $ C T* $ N there are three further minimal 
enveloping subspaces, characterized by their minimality with respect to the 
inclusions e c f e 0 T*e and $ C T** ® N*. The collection of minimal 
enveloping subspaces we have introduced is not disjoint; in fact, 

{#} = r* = r11 = r e and {2 *{**} = #n = N*. 

Matters being so, we have the following basic invariants of II: 
(A) Two tensor ranks: 

(1) the rank r, 
(2) the dual dimension s. 

(B) Two linear systems of tensors: 
(1) £ = {2 \b II*} C T* ®T\ 
(2)$ = {2f t*?®e*}C r ® i V . 

(C) Two linear subspaces: 
(i) r n = {*-}, 
(2)JV» = {2 4e,}. 

We begin with normalizations related to £ and Nu. Let us agree from now 
on to choose an orthonormal basis for N adapted to JV11. Thus 

™ = {em+l > ' • ' > em+rJ' 

This implies 
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hfj = 0 (m + r + 1 < a < m + p) 

and hence 

# = 0 and IIa = 0 (m + r + 1 < a < m + /?). 

Next we define a symmetric bilinear form (, )N : N X JV -» R by 

(&!,)„ = trace (T1 M I ) ( r V II) 

where I is the metric tensor. In orthonormal frames 

&l)N = 2 £ ' ear) • ^A^A{. 

The matrix of ( , )^ in such a basis is 

S* = (««>**)* = 2 A?*}. 

If we diagonalize ( , )N by an orthogonal change of base then 

11 

Sat = 

' Su 0 

0 S„ 

V ° 

\ 
0 

0 

with the diagonal terms Saa = 2 (fy") > 0. 
As a result we see that rank ( , )N = dim £ = r, and that the restriction 

(9)N: Nu X Nu -* i* is positive definite. This last remark is a potentially 
powerful statement. If, for example, p = 2 and 

II 
m+l m+2 = diag (ax,... ,am) and II = diag (bv . . . ,£w) 

then 

2 a] 2 *, V 
^ = 1 

,2 atbt 2 ft? 

and the positivity of this matrix implies 

o < d e t ^ = 2 ^ 2 2 6 I
2-(2^6 /)

2 

which is the Cauchy-Schwarz inequality. 
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There is an obvious globalization of this semidefinite form to global normal 
vector fields by integration: 

( tn ) f -h&vhd* where j > = 1-

This has not been well investigated, but may be useful in the study of extrinsic 
problems. An example of such a result is 

THEOREM 4.1. Let X: Mm -» Rm+P be an isometric immersion of a compact 
Riemannian manifold without boundary. If XN = normal projection of X then 
(XN,XN)g > m with equality if and only if the immersion lies on a sphere centered 
at the origin. 

PROOF. Consider the energy function E = X • X/2. Since 

dE = X-dX = 2 * - e / r / , 

the Hessian is easily computed to be 

H^E) = 2 8tj + 2 X • eah^ ® r^ = I + * • II . 

Now let F = H^E); then 

0 < f trace F ' i ^ 4 = f m + 2X • # + trace * » II X • Ild/I, 

and Minkowski's formula 

0 = f AT£<£4 = f m + X • i/d/f 

yields the inequality. The equality forces F = 0 and as a result 

0 = traced = A ,^ 

and the Bochner lemma may be applied to give E = X • X/2 = constant. 
Since several arguments to come are based on adapting orthonormal frames 

to a subspace of the linear system $, we will discuss this procedure in a unified 
way. First we note the dimension of the linear system $ is computable by 
inspection and has value dim $ = s. 

PROPOSITION 4.2. Let % be a subspace of$ with basis {<j>,..., </>y}. Then there 
exists a choice of orthonormal basis such that ^ has basis 2 <l>\ ® efl> • • • > 

PROOF. Let <j> = 2 Mx/̂ ? ® e
a->

 anc* introduce xx = 2 /i^/*/. These vectors 
^!, ..., Xj are linearly independent since a relation 0 = 2 ^x^x = 2 ^x^x/*/ 
implies 2 *x^X = 2 *XMx/̂ ? ^ 0, and hence that 6X = 0. 

Now choose ^ , . . . , ej to be an orthonormal base for the subspace 
xx, . . . , Xj. As such e = -H^JC^. Now since <J>X = II (x^9 ), we see that 
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H ^ - II ( /k* x , ) - II ( V ) - 2 < ® V 

Since H^ is nonsingular, ^ has the new basis 2 4>? ® £fl, . . • » 2 tf ® ^ . 
If we are free to choose the complement of ^ in $ then we can arrange 

$ = ^ + % with basis ^ = {2 4% ® ea} and ^2 = ( 2 <>" ® **} where 
1 < M < y and y + 1 < a < 5. 

Explicit choices of basis for $ will depend on properties of the curvature 
matrix and will be discussed in the section entitled the Gauss sequence. 

As a result of the discussion on the conjugate space of symmetric bilinear 
maps in §3 we have the following result. 

PROPOSITION 4.3. The second fundamental form II is essential at a point 
u E M, i.e. II (x,z) = 0 for all x E Tu implies z = 0, if and only ifs = m. 

PROOF. The bilinear map II is essential if and only if T*n = T* and this 
happens if and only if s = m. 

An important result is that compact manifolds without boundary always 
have a neighborhood on which the second fundamental form is essential. 

PROPOSITION 4.4. Let X: Mm -» Rm+P be an isometric immersion of a compact 
Riemannian manifold without boundary. Then there exists a point u E M such 
that s(u) = m. 

PROOF. Again we consider the energy function E = X • X/2. By compact
ness E has a maximum at some point u E Mm. We have seen in Theorem 4.1 
that the Hessian of E is given by HY(E) = I +X • II and this is negative 
definite at u since « is a maximum. Now I is positive definite which means that 
X • II is certainly negative definite. Since a component of II is negative definite 
we have immediately that II(w) is essential and hence by the last proposition 
that s(u) = m. 

Next we give a short report on the construction of functions from the 
second fundamental form. In the classical case of a hypersurface where 
X: Mm -» Rm+l, a choice of normal determines a matrix Hm via II 
== II em+l and hence a hypersurface determines a matrix II up to sign. 
In this case 

det(I+Air+1) = 2 ( 7 ) < ^ 

defines m functions ot with the even functions uniquely defined and the odd 
functions defined up to sign. 

The calculation 

(T1 + MT+l) A • • • A (rm + X<;+1) = ( s (7)°« X ' ) T ' A • • • A T-

and the Gauss equations 

@/ = -^+ 1 A tf 
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exhibit that all the even functions a2i are in fact intrinsic invariants resulting 
from the sums of wedge products of the coframe basis and elements of the 
curvature matrix. Moreover, these are the point averages of the 2/th sectional 
curvatures. 

Generalizing the hypersurface idea we may expand det(I + 2 \ j Hfl) in 
powers of the unknowns Xx, . . . , Xr. Thus, as above, 

( r 1 + 2 A a < ) A . . . A ( r ' " + 2 A û O 

+ 2 Ta*'"a'\ai "'K)rl A . . . A rm, 

where now the terms T°l " 'aj define polynomials of degree j on the normal 
bundle. By direct calculation one may show that Tay = H°x are the compo
nents of the mean curvature vector and T"1"2 = HaxHai — Sn n where Sn n 

is the matrix associated to the bilinear form (, ) N . 
We may construct scalar functions on Mm from these polynomials on the 

normal bundle by invariant theoretical devices. For example from the 
components Tai we have 

H - H = length of mean curvature vector 

and from the components Taxai we may construct a sequence of invariants 

detou+xr*)- 2 ^ ) ^ . 
The simplest of this last sequence is the function 

TÎ! = trace Tab = 2 HaHa - trace II*II* = HH- N(\\). 

Using the Gauss equations t)x may be shown to be a multiple of the scalar 
curvature R = l/m(m — 1) 2 ^ y ^ e other functions r\2i . . . , t]r

 t o my 
knowledge have not been investigated. Since they are not particularly com
plex, an analysis of these functions, hopefully with global integral formulas, 
would seem a fruitful line of research. 

There are, of course, invariants of the higher order terms, but with the 
exclusion of two special constructions which appear in the next section, this is 
unexplored territory. 

5. Tubes and Gauss maps. Let X: Mm -> Rm+P be an isometric immersion of 
a Riemannian manifold Mm. Then a natural mapping g: Mm -> G(m, m + p) 
into the Grassmannian of m-planes in (m + ^)-space is obtained by defining 
g(u) to be the translate of the tangent w-plane at X(u) to the origin. 

If we view G(m9 m + p) C Ami?w+/? via the standard Plucker imbedding [25, 
p. 16] then g(u) = ex A • • • A em may be interpreted as the position vector of 
a mapping g: Mm -• AmRm+p. 
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PROPOSITION 5.1. Let X:Mm->Rm+p be an isometric immersion of a 
Riemannian manifold Mm. Then the rank of the Gauss mapping g at u equals the 
dual dimension s(u). 

PROOF. Since 

d{ex A • • • A em) = 2 Ke\ A ' ' " A e«-\ A ea A *«+l A ' * * A *m> 

and the ex A • • • A ea_{ A ea A ea+l A • • • A em are orthonormal unit vec
tors in Awi?m+/), we see that 

rankg, = dimfoJJ} = s(u). 

Thus the dual dimension geometrically represents the number of parameters 
upon which the tangent planes locally depend. 

There is a second Gauss mapping which is defined from the unit normal 
bundle N0(M), G: N0(Mm) -> sm+p~~\ by assigning to v e N0(M) its trans
late to the origin on the unit sphere. This last mapping has a local degree 
called the Lipschitz-Killing curvature. The local degree equals det v • II and is 
characterized by 

GV2 m + / , : 1 l v =de t y - I I £ 2 ^ dA 

area sm+p~l area fiber area base 

The integral over the fiber of the absolute value 

K(U) = ƒ |det z' • HlrfS^j 

defines a function called the total curvature at U. 
The rich algebraic geometric theory of the Gauss mapping 

g: Mm-> G(m,m + p) 

and the Chern-Lashof theory of the total absolute curvature have been 
discussed in Chern [10] and Gardner [15]. Hence we will not report further on 
these ideas here. 

A possible interaction between these two Gauss maps could result from the 
analysis of the diagram 

0{m + p) 

y \ 
NJM)--z7^Sm+p-1 G(m, m -f p) < M 

Or g 

where 0(m + p) is the group of orthogonal (m + p) X (m + p) matrices. This 
is the classical data for integral geometric investigation. The idea is that 
information on the left and right may be compared by lifting and integrating 
over fibers. This gives rise to functional transforms and to an incidence 



16 R. B. GARDNER 

function. This would be fruitful if simple geometric phenomena on one side 
are translated into more complicated geometric phenomena on the other side. 

The idea of integrating over the fiber of the normal bundle can be applied 
to the polynomials on the normal bundle defined in the last section. A 
convenient way to represent the terms which are homogeneous of degree j is 
via the equations 

det(/ + 11 2 K II") = 1 + *!*! + ' • • + ^Mw-

In [29] H. Weyl showed by an elegant argument using classical invariant 
theory that the functions 

Hj(u) = ƒ ty(Xw+1,... ,Xm+/,)rfS/;_1 

which are now defined on Mm are actually intrinsic. In fact they are the 
averages of the/?th sectional curvatures introduced by AUendoerfer [1]. These 
particular functions arise in the study of V{Tp\ the volume of the normal tube 
of radius p about the submanif old. 

An easy calculation [29] shows 

V(Tp) = frl A ••• A rm 

X J 2 A K p
 det(«// + 2 Kha

v)dKm¥l A . . . A d\m+p 

'2*3<P ( 1 + ^ + ' ' ' + *»'*m)rfX'»+i A ' ' ' A dX^P 

= f^cjHjdApm+J 

where the c are universal constants. 
Since these intrinsic functions Hj appear so naturally in the deformation of 

submanif olds they are obvious candidates for integral formula analysis and, as 
a result, global theorems. As far as we know such theorems are not yet known. 

6. Invariants of the curvature matrix. The curvature matrix (0/) gives rise to 
a linear system 

0 = { 2 ^ . 0 / } C A 2 r , ayER, 

which has the minimal enveloping subspace 

r e = {x E r|xj0/ = o}1. 

The curvature rank of M at a point u is defined to be the dimension of T*e 

at w, and will be denoted by h(u). The complementary dimension m - h is 
known as the index of nullity [13, p. 425]. 

The nomenclature for h was chosen because of the next algebraic result 
characterizing h as the rank of the curvature matrix in the usual sense of block 
diagonal reduction. 
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PROPOSITION 6.1. The integer h is characterized as the smallest integer such 
that there exists a basis of T* with 

/0^l 0\ 
@{ = \0[^) (1 < a^ < *>• 

PROOF. Let r1, ...,rh be an orthonormal basis for T*0. By definition 
0 / E A2T*0, and hence the first Bianchi identity, 0 = 2 ^ A 0/ , implies 

S([ = 0 (h + 1 < X < m). 

Since 0/ is skew-symmetric this gives the desired block diagonal form. 
Conversely let us assume ®(' = 0 (h + 1 < X < m). The standard symme

try on pairs of indices of the curvature tensor then gives 

0 = R{kl = Rl
kXj (h + 1 < X < m), 

which implies 0 / E A 2 ^ 1 , . . . ,rA) as desired. 
We note, in particular, that in a basis of orthonormal frames adapted to T*, 

(6.1) ©ƒ ^ o for some a((i) and some fi(a); 

that is, no row or column in the h X h block is zero. 
The local structure of T*e in case the curvature rank is constant is due to 

Chern and Kuiper [13]. 

PROPOSITION 6.2. If h = constant on a neighborhood U, then T*® is completely 
integrable on the neighborhood. 

PROOF. In orthonormal coframes adapted to T* , &{ = 0, and hence the 
second Bianchi identity yields 

o = d®{ + 2 ©x A 4 - 2 +! A ©/ - - 2 4 A etf. 

Now by (6.1) 0^ ^ 0 for some j(p) and hence 0^ E A2T*0 implies <J>f 
E r*0 . As a result we have the Frobenius conditions 

fat = 2 ra A ^ + 2 rX A <ftf • 0 mod T*0. 

A similar integer invariant of the curvature matrix at a point u of M is k(u), 
the smallest dimension of a subspace PT* C T* such that the linear system 0 
is contained in the exterior ideal generated by the subspace W*. The 
geometric information contained in k(u) most naturally appears in a comple
mentary form and motivates us to introduce the curvature deficiency of M at w, 
which will be denoted by i(u) and is defined by i(u) = h(u) — k(u). These two 
new integers k and i can also be characterized by a special block structure of 
the curvature matrix. 

PROPOSITION 6.3. The integer k is characterized as the smallest integer, and the 
integer i is characterized as the largest integer such that there exists a basis of T* 
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adapted to T 
form 

*@ with the nontrivial portion of the curvature matrix in the block 

©^ = 
o i< 

1 < a, £ < h. 

PROOF. Let W* C T*® have an orthonormal basis T1, . . . , rk. Then ©ƒ 
E ideal W* if and only if R%ar = 0, A: + 1 <^ o, T <. h, which by the symme
try on pairs of indices holds if and only if jR£ao = 0. This last statement is 
equivalent to the desired conditions &a = 0. 

Let us notice that ©ƒ E A2T* implies ®f E ideal ( r 1 , . . . ,rh~l) so that 
0 < A : < A — 1. In particular let us note that h # 0 implies i > 1. 

Another obvious integer invariant characterized by a special block structure 
of the curvature matrix is the integer q equal to the maximal possible number 
of nonzero blocks in a diagonal block decomposition 

(6.2) K = 

* 

o 
* 

o 

1 * 

(Ka,p<h) 

Using the Cartan-Ambrose-Singer holonomy theorem, the integer q is 
immediately identified with the maximal number of mutually orthogonal 
subspaces of T which are invariant under the restricted holonomy group. 

The next result is the local idea underlying the de Rham decomposition. 

PROPOSITION 6.4. If the curvature matrix has the form (6.2), then there is an 
orthogonal decomposition 

and if the decomposition is constant on a neighborhood, each factor T l is 
completely integrable. 

PROOF. The first statement follows from the curvature tensor symmetries in 
a way similar to Proposition 6.1 and the second statement follows from the 
second Bianchi identities in a way similar to Proposition 6.2. 

Finally we note a simple inequality which is of importance in the study of 
immersions of Riemannian products. 

PROPOSITION 6.5. / > q. 
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PROOF. If we adapt an orthonormal coframe to the orthogonal decomposi
tion T*e = r*01 ± • • • _L T*®q then the curvature matrix has elements in the 
exterior ideal generated by the elements of the coframe in each factor minus 
one. Altogether this eliminates q elements from the original h and gives the 
inequality. 

We will now establish a basic dimensional inequality involving the integers 
h, s, i and r. The proof is based on the following unpublished lemma on 
quadratic exterior equations jointly worked out with M. Kuranishi in 1968. 

LEMMA 6.6. Let V be an n-dimensional real vector space and let y^ E V for 
1 < a < m < dim V and 1 < i < r. Then 2 J - , yl A y^ = 0 (1 < a,P 
< ni) implies dim{;/} < r. 

PROOF. The hypothesis and conclusion are unchanged under r X r orthogo
nal transformations yl

a = 2 byyj • As such we may assume y\, . . . , y[ are 
linearly independent with p > 0 and >>ƒ = 0 (p 4- 1 < j < r), by first reindex-
ing if necessary so that dim{>>{} = p ¥> 0 and then applying an orthogonal 
transformation so that 

S{y\,...,y\) = (y\,...yx,0,...,0). 

Matters being so, 0 = 2 y\ A yp implies by Cartan's lemma that 

>£ = .2 Cf}y{ ( 1 < i < p) with Cf} = Cf. 

Now substitution of these last equations into the hypothesis yields 

0 = 2 £ A 4 = . i i C ^ j A $ + ( = | + i ^ A yj,. 

The first of the last two terms, however, vanishes by the symmetry of the C? 
and leaves us with 

r 
0 == 2 yl A ƒ«, a sum of r - p terms. 

This places us in a position to use induction on r. The case r = 1 being trivial, 
the general step is given by the inductive hypothesis, since then 

dim{jj|} < dim {y^} + dim {jjf} < p + r - p = A\ 
l<*<p p+l</<r 

THEOREM 6.7. Let X: Mm -> i£m+/? Z>e #« isometric immersion. Then at each 
point u E M, the inequality 0 < s - / i < r — / obtains, where we recall s = 
ra«/c ö/7/ie Gaww map, h = rank of the curvature matrix, r = rank of the second 
fundamental form, and i = the curvature deficiency. 

Since these inequalities are of such importance we will make a few historical 
comments. The inequality with h = 0 which forces i — 0 and with r replaced 
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by the codimension p is due to E. Cartan [8]. The case with i = 0 and r 
replaced by p is due to Chern and Kuiper [13]. The case with r replaced by p 
and with i replaced by q, the number of nontrivial curvature diagonal blocks, 
is due to Alexander [4]. The case with r replaced by p is equivalent to 
Alexander and Maltz [5]. 

PROOF. Letting k = h — i, we may apply Proposition 6.3 to choose an 
orthonormal basis {T7} for T* and an orthonormal basis {ea} for N such that 

0 / G ideal { r 1 , . . . , / } , 

# = o, 
As a result the Gauss equations imply 

2 (2 ^r x ) A (2 Agy) = o (k + i < x,p < J). 

If we let W = ( 2 ^?\T*} a n ( i aPPty the last lemma we find 

(6.3) dimW<r. 

Now visibly {</>?} C {T\ . . . ,rk] + {2 Af\TX}; hence j < * 4- dim W, but 
by definition s — k > dim W, hence 

(6.4) dim JK==j-ik = j - A + i. 

Finally combining (6.3) and (6.4) gives the final result. 
As an immediate example of the impact of this inequality we will prove a 

result which is important for the analysis of isometric immersions of Rieman
nian products. 

PROPOSITION 6.8. Let X: Mm -> Rm+P be an isometric immersion of a 
Riemannian metric with curvature deficiency everywhere equal to p. Then for all 
u G M 

(1) dim Ol = m + p, hence is constant, and 
(2) s = h, hence the rank of the Gauss map is intrinsic. 

PROOF. 0 < $ — / r < r — I ' < / ? — I =/?—/> = (); hence r = / = p and 
s = A. 

In the case that h < s, there is additional information on the immersion at 
a point based on the fact that 0 / G A2 T*e. In the notation of the last theorem 
this implies 

2 (h°xhfo - h%tijx)T
X A r^ = 0, 1 < p < K h + 1 < X < s. 

We have not been able to extract the geometric information in this last set of 
equations in terms of an inequality on the basic integers of the immersion. 

We may get some global results from these pointwise estimates, by using the 

k < h, 
h < s, 
r 4- 1 < a < p. 
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compactness to guarantee the existence of at least one point where s = m. The 
first theorem sharpens a result in [13]. 

THEOREM 6.9. Let Mm be a compact Riemannian manifold with a nonzero 
sectional curvature at each point. Then there exists no isometric immersion with 
p < m + 1 - m&xuh(u). 

PROOF. By Proposition 4.4 there is a point at which s = m. Hence at this 
point 0 < m — A</? — i. Now the curvature hypothesis implies that h > 2 
everywhere and hence that i > 1. Thus/? > m - A + 1 > m + 1 - maxM/*. 

A much more dramatic result is obtained in the case of curvature identically 
zero. This result is due to Tompkins [28]. 

THEOREM 6.10. Let Mm be a compact Riemannian manifold having zero 
curvature matrix. Then there is no isometric immersion in R2m~l. 

PROOF. Since h = 0, i = 0 and using the point at which s = m which is 
guaranteed by Proposition 4.4 we see that 0 < m < r < / ? a s desired. 

Finally we introduce an increasing sequence of integer invariants of the 
curvature matrix related to a canonical filtration of the linear system 0. 

The t trace rank of M at a point u is defined to be the smallest integer p, 
such that the metric trace 

(tr^©)**1 = GS^ö/)Pl+1 = 0 

for all real mX m matrices A of rank < /. 
Since the conditions become increasingly less restrictive, 

0 < P! < • • • < pm < [m/2] + 1. 

As usual in such constructions, the first and last trace rank are the easiest 
to analyze. 

The top trace rank pm has a simple alternate description which leads us to 
give this trace rank the special name of curvature wedge length. In order to see 
the reason for this nomenclature we note that the smallest integer such that 
( 2 ^(/©/)Pm+l = 0 is the same as the smallest integer such that 7rPm+1 = 0 for 
all 7T G 0. Now let us define a linear mapping 

lq:@
q®^ A 2 *r 0 

by covering the symmetric multilinear mapping 

t)q\ 0 X - - x e ^ A 2 ? r e 

defined by 

ilq(ir
l,... ,irq) = 7T1 A • • • A <nq. 

Now we see that the condition 7rpm+1 = 0 for all m E 0 is equivalent to 



22 R. B. GARDNER 

lpm+\ = O and this holds if and only if yPm+\ = 0 since a symmetric 
multilinear map is determined by its associated polynomial. As a result the 
condition that the curvature wedge length be pm is precisely the condition that 
the exterior product of any (pm + 1) elements of 0 be zero. 

An easy lower bound for pm can be obtained by considering the traces of 
the matrix product of the curvature matrix with itself #-times. If q is the largest 
integer such that Trj 0^ # 0, then this is a nonzero sum of q4o\à. products of 
elements from 0 and, hence, pm > q. This particular computation was chosen 
since if q = 2k, then 

tr, 0* -= Pk(@\ 

the Chern-Weil representative 4/c-form for the A:th Pontryagin class [11]. 
A particularly fortuitous situation occurs if h = 2pm. Then 

lh:©
pm0^ AhT*® c* R 

becomes a nonzero symmetric /7-linear form, that is a polynomial. The 
invariants of this polynomial then lead to special classifications of curvature 
tensors. As a particular example of this we note that if M is a four manifold 
then /2 :©20 -> A4T* ĉ  R is a symmetric bilinear form which is the restric
tion of the symmetric bilinear form (A2 T*) X (A2 T*) -» A4 T* c* R defined by 
exterior multiplication. This is easily seen to have rank 6 and index 3. The 
resulting classification of the curvature tensor has been used by physicists for 
years and is known as the Petrov classification [24]. 

The bottom trace rank p{ is easiest to analyze when we note that a matrix 
atj has rank one if and only if it has the form atj = xtyj. This may be seen via 
the isomorphism Horn (V, V) on V ® V* under which the rank one matrices 
go into monomials x ® y*. As a result p{ is characterized as the smallest integer 
such that 

( 2 x^.0/)P l + 1 = 0 for all xi9 yj e R. 

We remark that the statement px > q is the same as J. D. Moore's condition 
A(q) [22]. 

Our next result which shows that m + px is an intrinsic lower bound for the 
dimension of an osculating space at u leads us to give the trace rank px the 
special name of osculation degree. 

PROPOSITION 6.11. Let X: Mm -> Rm+P be an isometric immersion of a 
Riemannian manifold. Then for every point u E Mm, r(u) > Pj(w). 

PROOF. Given xt, yj E R, then by the Gauss equations 

- 2 xfiBJ = 2 xtyjti A <t>j = 2 (2 *,*?) A (2 yjtf), 

which with the usual choice of normal frames, has the form 
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m+r 

2 <o" A if. 
a=m+\ 

As such 

J \a=m+\ / 

This implies px (u) < r(w) as required. 
Necessary and sufficient conditions that the equality r = px occurs will be 

given in §8. 

COROLLARY 6.12. If X: Mm -» Rm+P is an isometric immersion of a Rieman-
nian manifold with osculation degree px—p everywhere, then the dimension of all 
osculating spaces is constantly equal to m + p. 

PROPOSITION 6.13. Let M X N be a Riemannian product. Then 

P l ( M X i V ) = P l (M) + Pl(iV). 

PROOF. The identity follows from the isomorphism 

APT*(M)® T*(N) ^ 0 IÎT*(M)® KjT*(N) 
i+j=p 

and the fact that an orthonormal basis may be chosen so that the curvature 
matrix of a product metric satisfies 

(1 < a,/? < m,m + 1 < A,ju, < m + n) 

c A2r*(M)e A2r*(iv). 

7. The Gauss sequence. We define a linear mapping 

p: (T* <2> N) ® (r* ® JV) - * A 2 J T 

to be the tensor product of exterior multiplication T* ® T* -> !T* and the 
scalar product N ® N ^> R. Thus if 

</>/ = 2 < ^ (8) ea and ^ = 2 >4T* ® ** 

then 

If we restrict to $ ® $, then a typical element has the form 

2 *, ® ^ = 2 « j , * / ® ea ® 2 « t t ^ ® «6, 
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and hence by the Gauss equations 

This shows there is a short exact sequence 0->K-*$®$-+®-;>0 which 
we call the Gauss sequence. The basic relations between the extrinsic geometry 
reflected in the linear system 4> and the intrinsic geometry reflected in the 
linear system 0 come from the careful study of this sequence. 

In general, we will analyze the sequence through the study of the associated 
alternating bilinear map ft: (T* <8> N) X (T* ® N) -» A2 7*. 

A subspace ¥ C T* ® N is called orthogonally reducible with respect to ft if 
there is a nontrivial decomposition * = ^ 0 ¥2 satisfying /?(<£, i//) = 0 for all 
<j> E ^ and t// E *2 •

 W e w i U denote such a reduction by * = *i ± *2 • 
If there is no such decomposition, then ¥ is said to be orthogonally 

irreducible with respect to ft. 
We define $° to be the conjugate subsystem of $ under ft. That is, 

$° = fa E *|j8(<J>,̂ ) = 0 for all v// E O}. 

Since any complement $' of $° has the property that $ = $° 1 $' we may 
choose a complement $' and an orthonormal basis such that 

where /i is the curvature rank, and 

*° = a:^+1®ea , . . . ,2tf®ea}. 
If $ = $° then II is said to be an exterior orthogonal system of quadratic 

forms. This case was studied in detail by E. Cartan [8]. 

PROPOSITION 7.1. The bilinear mapping ft: $ <8> $ -> 0 is essential if and only 
if h = s. 

PROOF, ft is essential if and only if 

hence if and only if s = h. 
If s = A = constant so that /? is essential, then necessarily 0° = 0. This is 

the critical calculation for what are called cylindricity theorems. An example 
will be discussed in §9. 

We say that a subspace \p C $' is maximal totally isotropic if it is a subspace 
of $ ' of maximal dimension on which the restriction of ft is identically zero. 
The problem of studying the curvature deficiency of an induced metric is 
exactly equivalent to studying the dimension of a maximal totally isotropic 
subspace of $'. In order to see this let $ ^ be a maximal totally isotropic 
subspace of $', and let <bM, have basis {<j>k+ , . . . ><$>h}. By Proposition 4.2 we 
may choose an orthonormal base so that 
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• ^ - { 2 * 2 + i « e f l , . . . , 2 + J ® e f l } , 

and then for k + 1 < a, T < h, 

-®l = 2 < A tf = )8(2 tf ® *,, 2 ^ « eb) - 0. 

Conversely, if the curvature deficiency is /, then using the orthonormal frames 
guaranteed by Proposition 6.3 we see that 

is a maximal totally isotropic subspace of 0'. 

PROPOSITION 7.2. O' = i//1 J_ • • • J_ $q with ^k ¥* 0 (1 < k < q) implies 
that the curvature deficiency i > q. 

PROOF. Let <j>k be nonzero elements in \pk (1 < A: < q). Then the subspace 
{<t>,... <t>q] of $' is totally isotropic. Hence / > #. 

COROLLARY 7.3. /ƒ */ie curvature deficiency is one, then $' is orthogonally 
irreducible with respect to ƒ?. 

8. Allendoerfer type number. Let X: Mm -» Rm+P and let Eq be a #-plane 
field defined in a neighborhood of a point u E Mm. If xx, . . . , x is a basis for 
Eq so that £ = xx A • • • A x ? in the sense of Plücker geometry [25, p. 16], 
then we define the normal twist of Eq at u to be dim{xa J \\a) (1 < a < q, 
m + 1 < a < m + p). 

Since the span {xa J IIa} is unchanged under nonsingular transformations of 
X!, . . . , xq we may choose local frames so that Eq = ^ A • • • A eq. Since 

<*(*! A • • • A eq) 

= 2 ex A . . . A ea_, A ( 2 <f>a% + 2 Kea) A *«+i A • • • A e, 

and the normal twist at u equals dim {<(>*} (1 < a < #,m + 1 < a < m + /?), 
we see that the normal twist may be geometrically interpreted as the number 
of independent parameters needed to locally describe the nontangential 
motion of the #-plane field. 

The Allendoerfer type number of an immersion of M at u is the largest integer 
r such that there is a r-plane field defined in a neighborhood of u with normal 
twist equal to rr, where r is the rank of II. 

We note that the value rr is the maximal possible value for the normal twist 
of a T-plane field since dim{<£*} < rr. 

A consequence of our calculation with local frames adapted to the plane 
field is that the type number is r if and only if there is a choice of local frames 
so that the rr 1-forms <£{*, . . . , <J>* are all linearly independent and T is maximal 
with respect to this last property. The existence of an immersion with type 
number T implies that the osculating spaces are not very large. In fact since 
rr < s < m we see that maxM dim 0\ < m + [m/r]. 
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In the simplest case of hypersurfaces X: Mm -* Rm+X the type number 
T = dim{</>™+1}, which is just the matrix rank of the second fundamental form 
II. 

The immersions with type number everywhere < 2 are of particular interest 
since the geometry is quite rigid. We begin by showing that this class of 
immersions has a simple characterization. 

PROPOSITION 8.1. Let X: Mm -> Rm+P. Then r(u) > 2 if and only if the 
osculation degree px (u) = r(u). 

PROOF. If px = r then there exist real numbers x,., yj such that ( 2 *,\ty©/)r 

=£ 0. The Gauss equations then imply 

o # Œ (2 *,*?) A (2 >)*ƒ))', 

and hence that 2 xt<j>" and 2 yjtf define 2r linearly independent 1-forms. If 
we introduce X = 2 xte{ and Y = 2 >)^ then the 2-plane field X A Y has 
normal twist 2r. 

Conversely if r > 2, we may choose orthonormal frames so that <t>* and ^ 
are 2r linearly independent 1-forms, and, hence, so that 

(-©?)' = Œ tf A tf)r ^ o. 

This implies that p{ > r, but Proposition 6.11 implies that r > pj which 
establishes the equality. 

Recalling Proposition 6.13 that the osculation degree of a Riemannian 
product is the sum of the osculation degrees of the factor we note that one 
can construct high codimension immersions of type number greater than or 
equal to two by forming cartesian products of hypersurface immersions with 
second fundamental forms of matrix rank greater than or equal to two. 

COROLLARY 8.2. Let 

be isometric immersions of a Riemannian manifold Mm. Ifr(X) > 2 at a point u, 
then the rank ofX# = r#(w) > r(u) = the rank ofX. 

PROOF. Since r > 2, r = p{. Hence by Proposition 6.11 applied to the A"# 

immersion we have r# > p{ = r. 

COROLLARY 8.3. Let X: Mm -> Rm+P be an immersion with r(X) > 2. Then 
maxw dim Ou = p implies there is no isometric immersion in Rm+P~ . 

If the type number is > 2 we have seen that we may choose frames so that 
<j>", <j>2 are linearly independent for m + 1 < a < m + r. These forms give rise 
to two elements, 
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*i = 2 tf ® ea and 4>2 = 2 </>2 ® **> 

in the linear system $. The existence of these elements is one of the principal 
tools in the analysis of these immersions. 

LEMMA 8.4. Let X: Mm -> Rm+P be an immersion with T > 2. Then the 
equations 

(1) jSfop^) = Oand 
(2) |3(02, \p) = 0 w/tfi i// G r * 0 imp(y i// = 0. 

PROOF. Equation (1) and Cartan's lemma imply T** C {̂ j*} and equation 
(2) implies T** C {^}. Hence by linear independence, T** = 0. 

PROPOSITION 8.5. Let X: Mm -> Rm+P be an immersion with r > 2. 7%^ /Ae 
bilinear mapping /?: $ X $ -> © is essential, and as a result the rank of the Gauss 
map is intrinsic. 

PROOF. If \j/ e $ with /?(</>, \f) = 0 for all <£ e $ then we may take <t> = <j>x 

and <t> = <̂ 2 and apply the last lemma to deduce *// = 0. This implies that /? is 
essential and, hence, Proposition 7.1 implies that s = h. 

Now we consider local results that depend on r, and hence the dimension 
of the osculating spaces, being constant. The first result was found by 
AUendoerfer [2] when r > 3 and independently by Spivak [25, Vol. 4 ] and 
Erbacher [14] when T = 2. 

PROPOSITION 8.6. Let X: Mm -» Rm+P have type number r > 2 and constant 
dimensional osculating spaces. Then all osculating spaces are parallel and as a 
result X: Mm -* Rm+r. 

PROOF. Since r is constant we may choose frames so that 

<t>ï = 0 (m + r + 1 < c < m + p, 1 < i < m) 

and <j>", <j>2 are linearly independent f or m + 1 < a < m + r. 
The structure equations imply 

o = dfi = 2 *£ A ^ + 2 +2 A ** + 2 K A +e = 2 < A ^, 

1 < a, /? < m, m + 1 < a, 6 < m + r, m + r + 1 < c, e < w + /?. 

As a result /?(</>, <^) = 0 for all <J> e $, and Proposition 8.5 implies <f>£ = 0. 
Now these equations force d(el A • • • A em+r) = 0, and hence imply that all 
the osculating spaces are parallel. This means that the minimal enveloping 
spaces &{Mm) of §3 has dimension m + r and hence that X: Mm -» Rm+r. 

Our next results require an algebraic lemma due to Chern [12]. 

LEMMA 8.7. Let y° and y% E V (I < a < r, 1 < a < w) an m-dimensional 
real vector space. Then if 
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(8.1) 2 y£ A yj = i X A tf 

where y\,y\^ y\ are a set of 3r linearly independent vectors, then there exists an 
rXr orthogonal matrix bac such that 

£ = 2 bacfa (1< a < «). 

PROOF. 0 * (2«_iJjf A $)' = ( X - i # A ^ ) ' for the distinct pairs 
1 < a, ft < 3. This implies that {)%} are linearly independent sets and that 
the subspaces {yg} = {y£} for 1 < a < 3. 

Now let C/ = {j?}, V = {jf} and W = {j^} and let 

tf = 2 ^«^, f2 - 2 c ^ , jf = 2 4,6>4• 
Then relative to the above basis of U 0 K, 

*„c 0 

is a symplectic matrix and as a result I = lBC. Similarly I = *CD and I = (BZ) 
which implies B = C = D and i? is orthogonal. 

Now the identity 

2 ^ A y% - 2 BaX A jrg = 2 £ A 5 o c ^ 

subtracted from (8.1) for a = 1, 2, 3 gives 

and, hence, by the linear independence of the sets {y£}(\ < a < 3) we have 

4 = 2 « 
and we may take bac = Bca as claimed. 

PROPOSITION 8.8. Let 

& ™m+r Mm >R 

X#^Rm+r 

be isometric immersions of a Riemannian manifold Mm where r{X) > 2 and 
r(X) = r = constant. Then 

T(X) = i(X*) and r* « r. 

PROOF. Since T(X) > 2 we know by Proposition 8.1 that p, = r. Then by 
Proposition 6.11 r > r# > r. Hence r* = r = pl and again by Proposition 
8.1 we deduce T(X#) > 2. 
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Now if r(X) and T(X*) are both equal to two, we are done. If either r(X) 
or T(X#) is greater than two we may apply the last lemma to find an 
orthonormal basis with <j>" = <̂ *# and, hence, necessarily r(X) = T ( X # ) . 

Our final results are slight refinements of theorems due to Allendoerfer [2]. 

THEOREM 8.9. Let 

Mm
 X )Rm+r 

X#^Rm+r 

be isometric immersions of a Riemannian manifold Mm where T(X) > 2, r(X) 
= r = constant and II = II . Then X and X# differ by at most a reflection 
and a rigid motion. 

PROOF. By hypothesis we may apply a reflection if necessary to find 
orthonormal frames for which 

(8.2) r' = r ' # , */ = */*, # = </>?*. 

Hence the Codazzi-Mainardi equations 

dtf = 2 */ A *; + s *? A *i 

d*f = 2 <*>/'* A <*>;* + 2 </>?* A $f 

imply 2 4>f A ( ^ - $*) = 0 which, since r(X) > 2, implies 

(8-3) ^ = ^ # -

Equations (8.2) and (8.3) then imply uniqueness up to euclidean motions 
[25]. 

COROLLARY 8.10. Let 

X % nm+r M„ >R 

X*^Rm+r 

be isometric immersions of a Riemannian manifold where r(X) > 3 and r(X) 
= r = constant. Then X and X are unique up to reflection and rigid motions. 

PROOF. Since r(X) > 3 we may apply Lemma 8.7 to deduce that after a 
possible reflection and rigid motion II = II , and hence the result follows by 
the last theorem. 

The result is false for r = 2 with the classical bending of a piece of the 
sphere [25, Vol. 5] serving as a counterexample. 

Unfortunately, I know of no global theorems involving the type number. 
Since the class of immersions with r > 2 has a simple characterization and 
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has a quite rigid geometry, an interesting problem would be to classify those 
Riemannian manifolds which admit an immersion with r(X) > 2. 

9. Isometric immersions of Riemannian products. If XM : Mm -» Rm+P and 
Xy: K -* ^"+^ a r e isometric immersions of Riemannian manifolds, then the 
product immersion XM X Xv: Mm X ^ - > j^m+n+p+q -g a n isorrietric immersion 
of the Riemannian product. 

A natural question and a topic of recent interest is the study of when an 
isometric immersion of a Riemannian product X: Mm X Vn -» Rm+n+P is a 
product of isometric immersions. If this occurs, the immersion is called 
reducible. 

We make the index conventions for this section that 

1 < a, /?, y < m, m + 1 < À, /x, TJ < m + n, 
1 < /, y, k < m + «, m + « + 1 < a, è, c < m + « + /?, 

and the convention on local frame fields that {ea} are tangent to Mm X q for 
all q E J£ and {eA} are tangent to p X ï£ for all p e Mw. With this choice the 
product metric satisfies <j>^ = 0 and 0^ = 0. The Gauss equations then 
induce an orthogonal decomposition with respect to /?, O = <SfM ± ^K, where 

The minimal enveloping subspaces 

7 " * - { 2 ^ } and r * - { 2 ^ } 

can then be used to give a simple local criterion for reducibility. 

PROPOSITION 9.1. Let X: Mm X Vn -» Rm+n+P be an isometric immersion of a 
connected Riemannian product. Then X is reducible if and only if T* M C T*(M) 
andT**v C r*(K). 

In terms of components these last conditions are equivalent to ha
aX = 0 

which implies that the second fundamental form is simultaneously diagonal-
ized in block diagonal form 

In Moore [21] it is shown that having the second fundamental form 
simultaneously diagonalized in this fashion implies that an immersion is 
reducible. We now give a more geometric refinement of this result and a new 
proof using a minimal enveloping subspace idea. 

PROPOSITION 9.2. Let X: Mm X Vn -* Rm+n+P be an isometric immersion of a 
connected Riemannian product. Then X is reducible if and only if the instanta
neous mean curvature vectors 
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^M=2U and ^V=^hXXea 

are perpendicular. 

PROOF. The condition is clearly necessary. In order to see that it is sufficient 
we first note that HM • Hv = 0 if and only if 

(9-1) 2 / & A & - 0 . 

Now by the Gauss equations, 0^ = 0 implies 

and, hence, taking / = X and j = a and applying (8.1) we have 

(9-2) Kk = 0-

This in turn implies that the normal component of the instantaneous osculat
ing spaces 

N(O1
U(M)) = {2 Ke'a) a n d N{OX

U{V)) = (2 K^} 

are perpendicular for each u E M X V. 
In addition, (8.2) implies 

d{ex A . . . A em) = 2 < ^ A • • • A ea - 1 A ea A ea+1 A ••• A em 

= O m o d ^ 1 , . . . , ^ ) 

which implies that the restriction maps XM X q: Mm -> Rm+n+P for q G N are 
independent of the differentials of the coordinates on TV and hence are 
independent of q. This now gives us a unique restriction map X\M. In 
addition, the last computation shows that the minimal enveloping subspace of 
the linear system ( 2 <ƒ>« ® efl} given by ( 2 ^ g ^ } *s independent of q and this 
is the normal component of the first osculating space of the immersion X\M. 

Mutatis mutandis the same results hold for the second factor. That is, there 
is a unique restriction map X\v with normal component of the first osculating 
space given by {2 h^ea}. 

Next if u = (p,q) and u' — (p',q') then 

N{0\Ml){M)) = AT(0;M)(M)) and N(Olw)(M)) = ^ ( ( ^ ( M ) ) 

which by the above means that every first osculating space to X\M is 
perpendicular to every first osculating space to X\v. This in turn implies that 
the minimal enveloping subspaces &(Mm) and &{Vn) are perpendicular and this 
establishes the claim. 

We apply this local criterion to give a proof of a theorem due to Moore [22]. 

THEOREM 9.3. Let Mm be a connected Riemannian manifold with osculation 
degree px(Mm) = pl9 and Vn a connected Riemannian manifold with osculation 
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degree f)\(Vn) = p2. Then any isometric immersion of the Riemannian product 
X: MmXVn-> Rm+n+*+P2 is substantial and reducible. 

PROOF. The hypothesis implies that we can choose product orthonormal 
frames in such a way that (tf)Pl+l = 0, (e?)* * 0 and ( e ^ 2 ) A + 1 = 0, 
(&m+\)Pl * °- N o w by t h e Gauss equations and the fact that 0a

A = 0, we 
have 

(9.3) 2 (tf + < + 1 ) A (tf + </>*+2) « 2 «? A «J + 2 +i+ 1 A < ^ 2 . 

Since (of ) A and {®2+\Y2 a r e independently supported, the 2-form in (8.3) is 
of rank/?! + p2 and {$* + <t>m+\><t>2 + ^m+2} a r e 2(ft + ft) linearly independ
ent 1-forms. 

The curvature conditions 0^ = 0 and Cartan's lemma imply 

</>?. **+i e {tf + <t>a
m+l} = K and 4, <j>b

m+2 e fof + < , + 2 } - W, 
and hence equation (9.3) can be viewed in 

A2(F0 W)^ tfv®V®W® lew 

where it becomes 

Now writing this equation in terms of the basis of F® If given by 
(<t>° + <$>a

m+\) ® ($2 + ^ m + 2 ) w e ^ a v e matrices ^ and 5 defined by 

2 tf ® tf = 2 AaM + C M ) ® (*2 + *Ll) 
and 

2 C n ® < + 2 = 2 ^ w + </£+1) ® (** + <t>b
m+2) 

which satisfy Sa6 - Aab + 5 a 6 . 
Now by Proposition 6.4 the minimal enveloping subspaces of the tensors 

- e ? = 2 tf A <#>2
a and -@%X = 2 C n A *-+ 2 

are orthogonal and hence ^45 = 5̂ 4 = 0 . Now if we choose a basis of the 
normal space adapted to the orthogonal decomposition N = AN e BN, then 
<j>", <j>2 are linearly independent and </>̂ +1 = <fa+2

 = ° f o r ^ e index range 
over AN, and <j>° = <f>2 = 0 and <> +̂1 and <^+2

 a r e linearly independent for 
the index range over BN. As a result for ƒ = 1, 2, 

o = -e* = 2 tf A ^, 
implies ^ = 0 for the index range over AN, and similarly ^ = 0 for the 
index range over BN. Together these last two vanishing statements imply 
KL\ = 0 f° r ^ e entire index range which establishes the local criterion of 
Proposition 9.1. 
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An isometric immersion of a Riemannian product having an m0-dimension-
al euclidean factor X: Mm X i*m° -> Rm+mo+P is called m0-cylindrical (O'Neill 
[23]) if there exists an orthogonal decomposition Rm+mo+P = Rm+P x Rm° and 
an immersion XM : XM -» JR

w+/? such that ^(w,!/) = (XM(u\v). 
Our final application is to a theorem proved in codimension 2 by Alexander 

[3] and in arbitrary codimension by Moore [21]. 

THEOREM 9.4. Let Mi9 1 < / < k, be connected Riemannian manifolds with a 
nonzero sectional curvature at each point. Then an isometric immersion of the 
Riemannian product X: Mx X • • • X Mk X Rm° -> RN where N = 2f= 1 dim Mt 

+ m0 + k, is reducible and m0-cylindrical. 

PROOF. The hypothesis on curvature implies that the curvature ranks ht of 
each Mi are > 2. This implies the curvature deficiency / of 

MxX---xMkXRm° 

is > k, but then the basic inequality of Theorem 6.7, 0 < J — A < r — /, 
implies k > r > / > k and, hence, r = i = k and s = h. 

Now Proposition 7.1 implies /? is essential. Hence noting that 

9°(MX X • • • X Mk X Rm°) = 0(^m°), 

we see that /?(<ï>, $°) = 0 now implies $(jRm°) = 0° = 0. Proposition 9.1 now 
implies that the euclidean factor is reducible, and Proposition 2.1 implies that 
the euclidean factor is a m0-plane and hence the mapping is m0-cylindrical. 
This reduces us to Mx X • • • X Mk -> RM where M = 2f= 1 dim Mt + k. 

Since each Mt has a nonzero sectional curvature, the curvature ranks hi > 2, 
and this implies Pi(Mt) > 1. As such, Propositions 6.11 and 6.13 give 

k = r> px(Mx X • • • X Mk) = px{Mx) + • • • + ^ (Ak) > A:. 

As a result r = px (Mx X • • • X Mk) and pj (Mx ) = 1 and we may apply the last 
theorem inductively to split off the factors one at a time. 

In [21] Moore gave a global version of this last reducibility theorem which 
drops the curvature requirements. 

THEOREM. Let Mi be compact connected Riemannian manifolds with 

dim Mt = nt > 2 

for 1 < / < / ? , and let M = MXX • • • X M be the Riemannian product. Then 
any isometric immersion X: M —> R"1 + ' " Hp+P is a product of hypersurface 
immersions. 

This coupled with classical theorems on surfaces yields the following 
interesting example. 

X: S2X--^XS2 -> R3p 

p 
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is rigid. This is a genuine global theorem since local isometric deformations 
exist. 

Additional global work on reducibility with other curvature assumptions 
and with compactness replaced by completeness may be found in [5], [16], [17], 
[19], [23], and [27]. 
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