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BY B. J. BALL 

1. Introduction. The theory of shape, introduced by Karol Borsuk [2] in 
1968, has developed extremely rapidly in the intervening years. Much of the 
recent work (with the notable exception of that of Borsuk and his students 
and colleagues in Warsaw) has concentrated on the pro-homotopy, categori­
cal aspect of the theory. I think this may well prove ultimately to be the most 
important part of the theory-indeed, it may already be so-but nevertheless 
there remain interesting unsolved problems of a more geometric nature, 
problems which might be accessible through the more primitive techniques of 
geometric or general topology. The purpose of this paper is to give a brief 
(and necessarily incomplete) survey of results of this sort, and to call 
attention to a number of unsolved problems in this area. With one exception, 
all the problems listed have appeared in print and are identified with 
appropriate references. It happens that more than half of the problems listed 
are due to Borsuk, and a quarter of the total can be found either in his book 
[15] or in the survey article [14]. These two references are sources of many 
other problems as well. 

2. Basic definitions for compact metric spaces. There are two basic ap­
proaches to the shape theory of compact metric spaces: the "fundamental 
sequences" of Borsuk's initial paper [2] and the "ANR-systems" used by 
Mardesic and Segal [38], [39]. Since fundamental sequences seem conceptu­
ally more geometric in nature, they will be used primarily here. It should be 
pointed out, however, that some of the results mentioned in this paper were 
obtained only with the aid of the other approach (which surely is a part of 
geometric topology, too). Moreover, and more importantly, replacing ANR-
sequences by ANR-systems extends the notion of shape to all compact 
Hausdorff spaces. 

Let Q denote the Hubert cube, and consider a sequence f = {fk}f=i of 
maps (continuous functions) of Q into Q. If X and Y are compact subsets of 
Q, the triple (f, X, Y) will be called a, fundamental sequence from X to Y (in Q) 
provided that for every neighborhood V of Y, there is a neighborhood U of X 
such that f] U » f.\ JJ in V for almost all integers ij. (Note that X and Y are 
not uniquely determined by the sequence f ; indeed, it is evident that if (f, X, 
Y) is a fundamental sequence, then for any compacta X\ Y' in Q with 
X' c X and Y c Y', (f, X', Y') is a fundamental sequence. Thus "restricting 
the domain and enlarging the range" of a fundamental sequence yields 
another fundamental sequence. A similar assertion holds for continuous 
functions, of course.) 

Let i = {/fc}^!, where ik = id ö for all k. Then for any compact subset X 
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of <2, (i, X, X) is a fundamental sequence; (i, X, X) is called the identity 
fundamental sequence on X, and is denoted by ix. 
if X is homotopically equivalent to Y then X is fundamentally equivalent to 
y. Moreover, for the class of (compact) ANR's in Q, homotopy and funda­
mental domination coincide, as do homotopy and fundamental equivalence. 
To a large extent, the aim of geometric shape theory is to discover relations 
among arbitrary compacta, relative to these extended notions of equivalence 
and domination, that are analogous to theorems of homotopy theory for 
ANR's. 

Since every compact metric space can be embedded in Q (and [2] the 
relations of fundamental equivalence and fundamental domination are inde­
pendent of the embedding), there is no loss in assuming that all compacta 
considered are subsets of Q. It is worth noting, however, that Q can be 
replaced in the above definitions by any absolute retract for metrizable spaces 
which contains X and Y [10]. Thus, for example, in considering shapes of 
compact subsets of E2, the fundamental sequences may be taken to consist of 
maps of E2 into itself, rather than having to extend these to all of Q. 

3. Fundamental retracts. Fundamental retractions and fundamental retracts 
(or neighborhood retracts) are defined in complete analogy with the usual 
definitions of retractions and retracts, using fundamental sequences instead of 
maps. Specifically, if X and A are compact subsets of Q with A c X, then a 
fundamental sequence (r, X, A) is called & fundamental retraction of X to A if 
rk\A = id^ for all k; A is said to be & fundamental retract of X if there is a 
fundamental retraction of X to A, and A is & fundamental neighborhood retract 

Two fundamental sequences (f, X, Y) and (g, X, Y) are said to be 
homotopic (denoted (f, X, Y) » (g, X, Y)) if for every neighborhood V of Y, 
there is a neighborhood U of X such that fk\ U =* gk\ U in V for almost all k. 

If f = {fk}%„i and g = {gk}^^x are sequences of maps of Q into Q, then 
the sequence {gkfk}f=\ is called the composition of f with g, and is denoted by 
gf. It is easy to see that if (f, X, Y) and (g, Y, Z) are fundamental sequences, 
then so is (gf, X, Z) ; this fundamental sequence is called the composition of (f, 
X, Y) with (g, y, Z). 

It is easily verified that homotopy of fundamental sequences is an equiva­
lence relation, and that it is compositive; i.e., if (f, X, Y) =* (f, X, Y) and (g, 
y, Z) - (g', y, Z), then (gf, X, Z) - (g'f, X, Z). 

Two compact subsets X, Y of Q are said to be fundamentally equivalent, or 
to have the same shape, if there exist fundamental sequences (f, X, Y) and (g, 
y, X) which are homotopy inverses; i.e., (gf, X, X) =* i^ and (fg, Y, Y) =* iY. 
The class of all compact subsets of Q having the same shape as a given 
compactum X in Q is denoted by Sh(X). Thus two compacta X, Y in Q have 
the same shape if and only if Sh(X) = Sh(y), or, equivalently, if Y E Sh X. 

If only the first of the two homotopy relations above is postulated (i.e., (gf, 
X, X) ^ ix), then X is said to be fundamentally dominated (or shape 
dominated) by Y\ this is expressed notationally by Sh(X) < Sh(y). A prop­
erty a of compacta is called a shape invariant (hereditary shape invariant) 
provided that if Y has property a, so does every compactum X which has the 
same shape as Y (respectively, which is shape dominated by Y). 

The relations of fundamental equivalence and fundamental domination are 
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extensions of the concepts of homotopy equivalence and homotopy domina­
tion, in the sense that for any two compact subsets X, Y of Q, if X is 
homotopically dominated by 7, then X is fundamentally dominated by Y and 
of X if there exist a closed neighborhood TV of A in X and a fundamental 
retraction of N to A. The definitions of fundamental absolute retract (FAR) 
and fundamental absolute neighborhood retract (FANR) are entirely analogous 
to the corresponding definitions of AR's and ANR's, using fundamental 
retractions in place of retractions. Among the basic properties of FAR's and 
FANR's are the following, all due to Borsuk [3]. 

(3.1) Every AR in Q is an FAR and every ANR in Q is an FANR. 
(3.2) Every fundamental retract of an FAR (FANR) is an FAR (FANR). 
(3.3) A compactum in Q is an FAR (FANR) if and only if it is a 

fundamental retract of an AR (ANR). 
(3.4) All Betti groups of an FANR are finitely generated and almost all are 

trivial. (In particular, an FANR can have only a finite number of compo­
nents. It easily follows that every component of an FANR is an FANR.) 

(3.5) A compactum X in E2 is an FANR if and only if X has only a finite 
number of components, and each component of X has only a finite number 
of complementary domains in E2. 

It is also true [9] that a compactum X in Q is an FAR if and only if X has 
trivial shape (i.e., the shape of a point). Thus X is an FAR if and only if X 
has the shape of an AR, and it is natural to conjecture that X is an FANR if 
and only if X has the shape of an ANR, or of a polyhedron [14]. This 
conjecture has recently been disproved: Edwards and Geoghegan [22] have 
given an example of a (2-dimensional) continuum X which is an FANR but 
does not have the shape of any finite complex; moreover, West [54] has 
shown that every ANR has the homotopy type (and therefore the shape) of a 
finite complex, so X does not have the shape of any ANR. It follows from 
(3.5) that every FANR lying in E2 does have the shape of a polyhedron, and 
it is known [51] that every 1-dimensional FANR has the shape of a plane 
compactum. So the question of which FANR's have polyhedral shape is 
completely settled with respect to dimension: all 0- and 1-dimensional ones 
do, those of dimension 2 or more need not. However, the following questions 
remain open. 

PROBLEM 1 [15, p. 350]. Does every FANR in E3 have the shape of a 
polyhedron? 

PROBLEM 2 [15, p. 357]. Does every movable (definition in §4) compactum 
in E3 with finite Betti numbers have the shape of a polyhedron? 

In analogy with well-known results for AR's, Borsuk [3] proved that if X, Y 
and X n Y are FAR's, then X u Y is an FAR, and Chapman [18] has shown 
that if X n Y and X u Y are FAR's, then X and Y are FAR's. It is natural 
to inquire whether similar results hold for FANR's. 

PROBLEM 3 [3], [13]. If I J a n d l n ^ are FANR's, must X u Y be an 
FANR? 

It is known that the intersection of any decreasing sequence of AR's is an 
FAR, but it is easy to see that the corresponding result for ANR's is false. 
Borsuk has shown, however, that if Y{ D Y2 D . . . is a sequence of ANR's 
such that Yk+l is a deformation retract of Yk for all k, then C\™=\Yk is an 
FANR. 
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PROBLEM 4 [3]. If Yx D Y2 D . . . is a sequence of ANR's such that Yk + lis 
a retract of Yk for each fc, is n £L I ^ a n FANR? 

PROBLEM 5 [3]. If ^ D 72 D . . . is a sequence of ANR's and yA: + 1 is a 
retract of Yk for each A:, must Yk+l be a deformation retract of Yk for all 
sufficiently large kl 

PROBLEM 6 [3]. If X is an FANR and Yx D 72 D . . . is a sequence of 
fundamental retracts of X, is n^LiY* a fundamental retract of XI (It is 
known [20] that this is false without the hypothesis that X be an FANR.) 

4. Movability. The notion of a movable space seems to be one of the most 
useful ideas in shape theory. The basic definitions are due to Borsuk ([4], [8], 
[9]). 

A compact set X in Q is said to be movable if for every neighborhood U of 
X, there is a neighborhood U0 of X which can be deformed into any 
neighborhood of X by a homotopy in U; i.e., for every neighborhood V of X, 
there is a homotopy cpv: U0X I -* U such that cpv(x, 0) = x and (pv(x, 
1) E F for every x E U0. If the homotopy cpv can always be chosen so that 
(pv(x, 1) = x for every x E X, then A" is said to be strongly movable. If 
x0 E X, the pair (X, x0) is pointed movable, or X is movable with respect to x0, 
if <pF can be chosen so as to leave x0 fixed at all times /. 

Related to the idea of pointed movability is that of shapes of pointed 
compacta, or pointed shapes. These are defined and their basic properties 
demonstrated on pp. 243-246 of [2], and will not be repeated in detail here. 
Suffice it to say that for a, pointed fundamental sequence from (X, x0) to (Y, y0) 
one requires a sequence f = {^J^Li of maps of (Q, x0) into (Q, y0); 
moreover, all homotopies in the definition of "pointed fundamental 
sequence" are required to be rel x0, as are the homotopies involved in the 
definition of homotopic pointed fundamental sequences. (Recall that a map 
<p: A X ƒ —> B is a homotopy rel x0, where x0 E A, if for each t E /, y(x0, 
t) = cp(x0, 0).) The pointed shape, Sh(^, x0), of a pointed compactum is 
defined analogously to Sh(X), and similarly for the relation Sh(X, x0) < 
Sh(7, y0). (Perhaps it is well tó point out that Sh(X, x0) is not the same as 
Sh(X, {x0}), where Sh(X, {x0}) is the (relative) shape of the pair (X, X0), 
defined earlier in [2], with X0 = {x0}.) 

It has been shown by Borsuk ([4], [8]) that movability (pointed movability) 
is an hereditary invariant of shape (pointed shape). 

Other results on movability include the facts [4] that every ANR, or more 
generally, every FANR is movable, that every plane compactum is movable 
(in fact [8], pointed movable with respect to each of its points), that solenoids 
are not movable, and that a compactum is movable if each of its components 
is movable (but not conversely). Additionally [8], if (X, a) is movable, so is 
(X, b) for any point b in the same component of A' as a; from this hypothesis 
((X, a) movable and b in the component of X containing a) it follows that 
Sh(X, a) = Sh(X, b). This latter result does not hold in general without the 
requirement that (X, a) be movable. It was shown in [3] that every FANR is 
strongly movable (without using that term), and in [9] it is shown that strong 
movability in fact characterizes FANR's. The question of whether, or when, 
movability implies pointed movability is of considerable interest; the question 
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has been raised independently by Borsuk [8], McMillan [41] and Krasinkie-
wicz [31]. Though phrased in point set topology terms, this question seems to 
be essentially algebraic in nature. Nevertheless, because of its importance to 
many shape theory results, it is included here. 

PROBLEM 7 [8], [41], [31]. Is every movable continuum X necessarily pointed 
movable with respect to one (or to each) of its points? 

A related result, given by McMillan [41], is that if I is a movable 
continuum and (X, x0) is pointed 1-movable, then (X, x0) is movable. 

Mardesic has shown [34] that every n-dimensional LCn~l continuum is 
movable. Borsuk [5] gave an example of a nonmovable locally connected 
(LC°) continuum X0 in E3, with dim X0 = 2. The continuum X0, indicated in 
Figure 1, is locally E2 at all points except a. 

FIGURE 1 

Borsuk showed that X0 - Int D0 has the shape of a plane continuum, and 
hence is movable. 

PROBLEM 8 [5]. Is every closed proper subset of X0 movable? 
In connection with the preceding example of Borsuk, we note that McMil­

lan [42] has recently constructed a locally connected nonmovable continuum 
in E3 which does not separate E3. 

Of course, there exist many «cwlocally connected continua which are 
movable (for example in E2), but there are no known movable continua 
which do not at least have the shape of a locally connected continuum. This 
is an example of what Borsuk calls the problem of "reasonable representa­
tives of shapes." 
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PROBLEM 9 [15, p. 357]. Does every movable continuum have the shape of a 
locally connected continuum? 

In an interesting recent paper [31], J. Krasinkiewicz has shown, among 
many other results, that every 1-dimensional continuous image of a tree-like 
continuum is movable. He poses several questions, of which the following two 
seem most relevant here. 

PROBLEM 10 [31]. Is every 1-dimensional continuous image of a movable 
continuum movable? 

PROBLEM 11 [31]. Are all arcwise connected 1-dimensional continua mov­
able? 

A compact subset I of g is said to be n-movable [11] if for every 
neighborhood U of X, there is a neighborhood U0 of X such that any 
«-dimensional subset of U0 can be deformed into an arbitrary neighborhood 
of X by a homotopy with values in U. Borsuk shows that «-movability is an 
hereditary shape invariant, that a compactum is «-movable if each of its 
components is «-movable, and that the suspension of any «-movable com­
pactum is «-movable. He poses the following question. 

PROBLEM 12 [11]. If X is «-movable and Y is ra-movable, must X X Y be 
(« + m)-movable? 

A partial answer to Problem 12 has been given by Kodama and Watanabe 
[29], who show that, under the given hypothesis, X X Y is /c-movable where 
k = min(«, m). Kodama and Watanabe also answer another question of 
Borsuk by showing that there is a nonmovable continuum which is «-movable 
for every «; the same example was also given independently by Kozlowski 
and Segal [30]. 

McMillan [41] has introduced an interesting variant of 1-movability, which 
he calls "nearly 1-movable." McMillan indicates that solenoids fail to be 
nearly 1-movable, as does the Case-Chamberlain curve, and shows how to 
construct an example of a 1-dimensional continuum which is nearly 1-mov­
able but not 1-movable. He also proves that every continuous image of a 
nearly 1-movable continuum is nearly 1-movable, and that every continuous 
image of a pointed 1-movable continuum is pointed 1-movable. 

PROBLEM 13 [41]. Is every continuous image of a 1-movable continuum 
necessarily 1-movable? 

The next question, a special case of Problem 6, is also due to McMillan. 
PROBLEM 14 [41]. Is every 1-movable continuum necessarily pointed 1-mov-

able (with respect to at least one of its points)? 
Another result from [41] is that if A and B are nondegenerate continua 

such that A X B is embeddable in a PL 3-manifold, then each of A and B is 
pointed 1-movable with respect to each of its points. This suggests the 
following question. 

PROBLEM 15 [41]. If A and B are nondegenerate continua such that A X B 
is embeddable in a PL 3-manifold, must each of A and B be movable? 

N. Shrikandhe [49] has shown that if X is a compactum in En, then En/X 
is locally simply connected if and only if X is nearly 1-movable. McMillan 
and Shrikandhe [43] have used this theorem to obtain a number of additional 
results on the simple connectivity of quotient spaces. 
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5. Fundamental dimension and Euclidean coefficients. The Euclidean 
coefficient, e(X), of a compactum X is the smallest n (n = 0, 1, . . . , oo) such 
that Sh(X) < Sh(7) for some compactum Y c In. This definition of e(X) is 
(equivalent to) that given in [15]. In [14], e(X) was defined to be the smallest 
n such that Sh(Z) = Sh(7) for some Y c I"; here we will let e'(X) denote 
this latter number. It is clear that e(X) < e\X) and that Sh(Z) < Sh(Y) 
implies e(X) < e(Y). The following problems remain open, however. 

PROBLEM 16 [15, p. 354]. Is e(X) = e\X) for every compactum XI 
PROBLEM 17 [14]. Does Sh(X) < Sh(7) imply e\X) < e'(Y)l 
Several other interesting questions concerning the numbers e(X) and e\X) 

are given in [14] and [15]. 
The fundamental dimension ¥d(X) of a compactum X was introduced in [7]; 

it is the smallest n (n = 0, 1, . . . , oo) such that S h ^ ) < Sh(7) for some 
«-dimensional compactum Y. (Equivalently [45], [28], Fd(Z) is the smallest n 
such that Sh(Ar) = Sh(7) for some «-dimensional Y.) 

The fundamental dimension has been studied extensively by S. Nowak 
([45], [46], [47]). The following are some of his results. 

(5.1) For any compactum l e f t Fd(A') < n if and only if X is deform-
able inside each of its neighborhoods to a set of dimension < n. 

(5.2) For any compactum X c Q, Fd(Z) < n if and only if Fd(C) < n for 
every component C of X. 

(5.3) Every compact, connected «-manifold with nonempty boundary has 
fundamental dimension < n — 1. 

(5.4) Every compact proper subset of a PL «-manifold has fundamental 
dimension < « — 1; in particular, Vd{X) < « — 1 for every compact subset 
of En. 

PROBLEM 18 [45]. Does every compact proper subset of an «-manifold have 
fundamental dimension < « — 1? 

PROBLEM 19 [46]. If Fd(*) > ¥d{X n Y), is Fd(X u Y) > Fd(X)? 
PROBLEM 20 [46]. Let C be the well-known Case-Chamberlain curve. Is 

F d ( C ) = «? 
The following question is due to Borsuk. 
PROBLEM 21 [14], [15]. For every compactum X, is ¥d(X X Sl) = Fd(^ ) + 

1? More generally, is ¥d(X X 5 " ) = Fd(X) + «? 
Kodama [28] has obtained a number of results on fundamental dimension, 

and has defined the fundamental dimension Fd(Ar, A) for a pair of compacta 
as the minimum dimension of a compactum Y having a closed subset B such 
that Sh(*, A) < Sh(7, B). (Here Sh(*, A) is the relative shape defined in [2].) 
Kodama shows that if X is an AR and A is a closed subset of X, then 
Fd(^) < Fd(*, A) < Fd(^) + 1. He asks the following question. 

PROBLEM 22 [28]. For every compact pair (X, A), is Fd(^ , A) < 
max(Fd(*), Fd(A) + 1)? 

6. Stability. A space X is said to be homotopically stable (or H-stable) if for 
each closed proper subset Y of X, no map of X into Y is homotopic in X to 
id^. Similarly, X is R -stable if no proper subset of X is a deformation retract 
of X. Borsuk [13] has studied analogs of these notions in shape theory and has 
raised a number of interesting questions concerning them. 
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A compact subset X of Q is fundamentally stable, or F-stable, if for no 
closed proper subset Y of X is there a fundamental sequence (f, X, Y) with (f, 
X, X) » i^. Similarly, X is fundamentally R-stable, or FR-stable, if no closed 
proper subset of X is a fundamental deformation retract of X (i.e., for no 
closed proper subset Y of X is there a fundamental retraction (r, Z, Y) with 
(r, X, X) ^ i^). Finally, X is shape stable, or S-stable, if no closed proper 
subset of X has the same shape as X. (Shape stable compacta are called 
"primitive" in [15].) Borsuk obtains a number of theorems related to these 
notions, including in particular the result that every FANR X contains an 
i^JR-stable compactum Y with Sh(7) == Sh(X). He poses, among others, the 
following similar questions. 

PROBLEM 23 [13]. Does every compactum X contain an FR-stable (or an 
F-stable) compactum Y with Sh(7) = Sh(X)? 

PROBLEM 24 [13]. Does every continuum X contain an S-stable continuum 
Y withSh(Y) = Sh(X)l 

An affirmative answer to Problem 24 for the case Fd(^) < oo has been 
given by Cook, Feuerbacher and Kuperberg [19]. 

PROBLEM 25 [15, p. 357]. Is the product (or the one-point union) of two 
5-stable compacta necessarily 5-stable? 

7. Shapes and complements. The beautiful result of Chapman [16] that two 
Z-sets in Q have the same shape if and only if their complements in Q are 
homeomorphic has inspired a number of investigations concerning similar 
theorems for compacta in En or Sn. 

First, Chapman [17] proved a finite dimensional version of his theorem, but 
needed strong codimension requirements as well as a fairly complex embed­
ding condition. Geoghegan and Summerhill [25] reduced the codimension 
requirements to the trivial range, the best possible for arbitrary compacta, 
and replaced Chapman's embedding condition with the more familiar 1-ULC 
complement property. Rushing [48], considering embeddings in S", n > 5, 
showed that if one of the compacta is Sk (k =£ 1) and the other is globally 
1-alg, no further restriction is needed to obtain the equivalence of "having the 
same shape" and "having homeomorphic complements" (except for the case 
k = n — 2, which can be handled by adding an embedding restriction). 
Hollingsworth and Rushing [27] show that, for compacta in En, n > 5, with 
dimensions in the trivial range, it is sufficient that X and Y satisfy the "small 
loops condition." Additional results of this kind have been obtained by Liem 
[32] and Venema [52], [53]. Coram, Daverman and Duvall [20] have obtained 
results relating shapes and embeddings in En of a different sort, showing that, 
under suitable dimensional and embedding restrictions, a compactum in En 

which has the shape of a complex K must have arbitrarily close neighbor­
hoods which are regular neighborhoods of a copy of K in En. 

It seems likely that further results relating shapes of compacta in En to 
properties of their embeddings will be developed, but apparently no specific 
problems in this area have been posed in the literature. 

8. Compact Hausdorff spaces. As indicated in §2, the theory of shape can be 
extended to the class of all compact Hausdorff spaces by the method of 
Mardesic-Segal, based on inverse systems of ANR's. Since the definitions are 
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fairly involved and only a few problems in this area will be mentioned, the 
definitions will not be repeated here. The interested reader is referred to [38] 
and [39]. 

Gordh and Mardesic [26], using categorical techniques, obtain a number of 
results on movable Hausdorff curves (1-dimensional continua). They ask 
several questions, including the following. 

PROBLEM 26 [26]. Is every locally connected (hereditarily locally connected) 
Hausdorff curve movable? 

Mardesic [33] has generalized the notion of FANR to compact Hausdorff 
spaces, and uses the terminology absolute neighborhood shape retract (ANSR) 
for this generalized concept. 

Mardesic has also [35] extended the definition of strong movability to 
compact Hausdorff spaces. He shows, among other results, that every ANSR 
is strongly movable. Borsuk [9] proved that strong movability (of compact 
metric spaces) characterizes FANR's, and Mardesic asks whether the analo­
gous result holds in his more general setting. 

PROBLEM 27 [35]. Is every strongly movable compact Hausdorff space an 
ANSR? 

The following question was asked by D. A. Edwards in a casual conversa­
tion. It probably has not been seriously considered by anyone, but would be 
interesting if true. 

PROBLEM 28. If X is an open «-cell and fiX is the Cech compactification of 
X, is Sh(£Y - X) = S h ^ " - 1 ) ? 

9. Noncompact spaces. There are several ways of extending shape theory to 
noncompact spaces; there seems to be general agreement that the approach 
of Mardesic [36] (see also Morita [44]) or an equivalent method is the most 
appropriate. This treatment applies to arbitrary topological spaces, and is 
highly abstract and nonintuitive. If one is willing to restrict attention to a 
smaller class of spaces, however, more geometrically oriented theories are 
available. 

For metrizable spaces, the shape theory developed by Fox ([23], [24]) does 
not completely obscure the geometry involved (and is equivalent [37] to 
Mardesic's theory restricted to metrizable spaces). 

Borsuk's "weak shape" for metrizable spaces [12], [15] and the related 
notion of "position" (of a set in a space) are quite geometrically oriented. 
There are many appealing problems here. 

The theory of proper shape for locally compact metric spaces, introduced 
by the author and R. B. Sher [1], was geometrically motivated. It was an 
attempt to carry over to a class of noncompact spaces the property of 
Borsuk's shape theory for compacta of reflecting the global geometric similar­
ities of spaces while ignoring their local complexities. It might be worth 
further development. 

10. Concluding remarks. It has not been possible here to give a truly 
comprehensive survey of geometrically appealing results and problems of 
shape theory. Many topics have been treated less thoroughly than they 
deserve, and many others have been omitted altogether. However, in addition 
to the references cited explicitly, I have attached a supplementary bibliogra-
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phy listing many other papers that seem to fall into the category of "geomet­
ric shape theory." I am sure there are omissions in this listing, but I hope it 
will prove useful to those who wish to undertake a systematic study of the 
area. In this connection, I should remark that Jack Segal [55] has compiled an 
essentially complete bibliography of shape theory. 
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