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Quillen's recent solution [4] of Serre's problem (on projective modules 
over polynomial rings) is based on the following remarkable theorem. 

Let K be a commutative ring, max(iT) its set of maximal ideals, and T an 
indeterminate. 

THEOREM 1 (QUILLEN [4, THEOREM 1]). Let M be a finitely presented 
K [T] -module and put M0 = M/TM. IfMm s M0 [T] m for all m G max(K), then 
M^M0 [T]. 

We have developed an axiomatic version of Quillen's arguments, also using 
ideas of [1], which yields the following results, among others. Detailed proofs 
will appear elsewhere. 

THEOREM 2. Theorem 1 is valid with the word "module" replaced by 

"algebra". 

Theorem 1 follows from Theorem 2, applied to the symmetric algebra S(M). 

Call a commutative j£-algebra A invertible if, for some £-algebra B, A <®K B 

is a polynomial algebra K[XX, . . . , Xn]. Then A admits an augmentation, 0 —• 
A —> A —> K —• 0, and the AT-module J A = A/A2 depends, up to isomorphism, 
only on A. We say A is stably isomorphic to a J^-algebra B if A ®K C = B <8>K C 

for some invertible AT-algebra C 

THEOREM 3. Let A be a finitely presented K-algebra. 
(a) If A m is a polynomial Km -algebra for all m E max(iT) then A is a sym­

metric algebra S(P) of a projective K-module P, 

(b) If Am is an invertible Km -algebra for all m G max(Â") then A is invert­
ible. 

COROLLARY. Let A and B be invertible K-algebras. If J A and JB are sta­

bly isomorphic, and if Am and Bm are stably isomorphic for all m G max(Af), 
then A and B are stably isomorphic. 

REMARKS. The title of the paper refers to part (a), which solves a problem 
posed in [2, p. 67], [3], [5, §6] , and [6, p. 3 ] . In geometric language it asserts 
that every affine space bundle over spec(Af) arises from a vector bundle. Part (b) 
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is proved by reducing it to part (a). Part (a) is proved by first constructing an 
augmentation A —> K and then applying the following general result, which has 
various other applications. 

THEOREM 4. Let A be a finitely presented {not necessarily commutative) 

K-algebra equipped with an augmentation, 0 —> A —> A —> K —> 0, and put 

7A = (Bn>0A
n/An + 1, the associated graded algebra. If An = yAm (as filtered 

algebras) for all m G max(AT), then A = y A. 
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