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We continue in this note the description of deformation theorems for geo­
desic fields on a Riemannian manifold begun in [1] , restricting ourselves here to 
surfaces of revolution and to deformations of metric within this class. Using 
real and holomorphic Fourier transforms, we obtain in Theorem 2 an explicit 
formula for the deformation of metric corresponding to a prescribed deflection 
of geodesies. As an application, we turn again to the structure of the cut locus 
and prove 

THEOREM 1. There exists in R3 a strictly convex surface of revolution 

containing a nonempty open set of points p for which the cut locus C(p) is non-

triangulable. 

We thank Professors Robert Strichartz, Oscar Rothaus and Emil Grosswald 

for many helpful conversations. 

1. Geodesies on a surface of revolution. Let M be a surface of revolution 
whose metric is given in polar coordinates on the disc r < 1 by 

ds2=E(r)dr2 + r2d62. 

Then the equation of a geodesic y(t) = (r(t), 6(t)) is given explicitly [4] by 

o) e = e. + f , w dr 
° }r°rs/r2-c2 

where the quantity Ici measures the closest approach (in the r-d plane) of the 
geodesic to the origin. Note that the constant c can be computed from any small 
segment of the geodesic by Clairaut's theorem [4] : 

(2) c = r{i) sin e(Y), 

where e{t) is the angle between 7 and the meridian 0 = constant. 
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KO, 0(0 

7 j = 7 here 

Suppose now that the metric is altered on some disc r <a < 1, but remains 
rotationally symmetric: ds\ = Ex{f)dr2 + r2 dd2. Let 7 be a geodesic in the 
original metric and yx the geodesic in the perturbed metric which begins outside 
the disc r < a coincident with 7. By (2), both geodesies correspond to the same 
value of c. So if 7 is tangent to the circle r — c at the point (c, 6) and yt at the 
point (c, 6t), then the angle 6(c) = 6X - 0 measures the deflection of 7 due to 
the change of metric. Subtracting (1) from the corresponding formula in the 
new metric, we get 

<3> m-l-^T?d'-
where g(f) = yjE^r) - \/E(r) measures the change in metric. 

Conversely, we prove 

THEOREM 2. Given a preassigned deflection function ô, there exists a 

corresponding change of metric which realizes it. 

Specifically, let 8 be a smooth odd function supported on [-a, a]. Then 
there is a smooth even function g, vanishing at 0 and also supported on [-a, a], 
such that 6 and g are related by equation (3). Indeed, g is given explicitly by 

(4) 
2 - [6(c)-c5'(c)]r2 

gif) = - • de. 

2. Proof of Theorem 2. We briefly sketch the steps involved. 

Step 1. Changing variables by r = e~x and c = e~v', (3) becomes 

J °° dx 

G(x)K(v - JC) • — = G * K (convolution), 
\f2n 

where H(v) = S(e~ü), G(x) = g(e~x) and the kernel K is defined by 
/ 2 for u > 0, 

for w < 0. 

(6) 

!

V ^ ( e 2 " - l ) _ 1 / 

0 
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Step 2. Applying the Fourier transform T to (5), we get 

(7) T{H) = T(G)T(K). 

The transform of A" turns out to be a Beta function: 

1 T(l/2)r(l/2 + fr/2) i 
T{KXt) = 2 r ( 1 + , , / 2 )

 = 2 *ll2>1/2 + itl2^ 

This is nonvanishing, so equation (7) can be solved for T(G): 

(8) T(G) = T(H)/T(K). 

Step 3. Given the deflection function ô, and hence H, we show that 
T(H)/T(K) lies in the Schwarz space of smooth functions which decay "rapidly" 
at ±oo. Since this is in the image of Fourier transform, we can solve equation 
(8) for G. 

Step 4. Finally we "de-exponentiate" G to retrieve the function g. Using 
either the Paley-Wiener theorem for holomorphic Fourier transforms or a direct 
argument from equation (4), we show that g satisfies the conditions listed in 
Theorem 2, completing the proof. 

3. Proof of Theorem 1. The geodesies from a point P on the equator of 
the unit sphere in R3 converge at the antipodal point Q. Suppose that by per­
turbing the metric slightly near the north pole, we can deflect the geodesies 
from P so that: 

(a) Q is still a conjugate point to P along some geodesies of length n. 

(b) The geodesies from P which pass through Q have lengths > 7r. 
(c) There is an infinite sequence of geodesies from P to Q of length 7r, inter 

leaved with an infinite sequence of lengths > n. 

From (a) and (b) it will follow that Q is still in the cut locus of P. Further­
more, on each geodesic from P to Q of length > 7r, the cut point will occur be­
fore Q. By (c), removal of Q will disconnect the cut locus into infinitely many 
components, showing it to be nontriangulable. 

To achieve this situation, we first describe a deflection function which can 
force the above conditions and then, applying Theorem 2, realize it by a suitable 
perturbation of metric. 

To complete the proof of Theorem 1, we look at any point P which lies 
outside the region in which the metric has been changed and also outside its 
antipodal region. Using rotational symmetry of the new surface we obtain condi­
tions analogous to (a), (b) and (c) above; thus the cut locus of P is also non­
triangulable. 
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