## SPECTRAL CLASSIFICATION OF OPERATORS AND OPERATOR FUNCTIONS

BY I. GOHBERG,<sup>1</sup> M. A. KAASHOEK AND D. C. LAY

Communicated by Paul R. Halmos, January 23, 1976

Let A and B be holomorphic functions from an open set  $\Omega$  in the complex plane into the Banach space L(X, Y) of all bounded linear operators between two Banach spaces X and Y. The functions A and B are called *equivalent on*  $\Omega$  (see [3]) if there exist holomorphic operator functions E and F on  $\Omega$ , whose values are bijective bounded linear operators on X and Y, respectively, such that

$$A(\lambda) = F(\lambda)B(\lambda)E(\lambda), \quad \lambda \in \Omega.$$

The concept of equivalence is also of interest in the case that (X = Y and ) A and B are linear functions of the form  $C - \lambda I$ . In that case it provides a language in which the spectral structure of a linear operator at a point may be classified. Two operators T and S are said to have the same *spectral structure* at a point  $\lambda_0$  if the operator functions  $T - \lambda I$  and  $S - \lambda I$  are equivalent on an open neighbourhood of  $\lambda_0$ . More generally, we say that two operator functions A and B belong to the same *spectral class* at a point  $\lambda_0$  if there exists an open neighbourhood of  $\lambda_0$  on which A and B are equivalent.

Let  $D(\lambda) = (\lambda - \lambda_0)^{k_1} P_1 + \dots + (\lambda - \lambda_0)^{k_n} P_n + P_0$ , where  $k_1, \dots, k_n$ are positive integers,  $P_1, \dots, P_n$  are mutually disjoint one dimensional projections and  $P_0 = I - (P_1 + \dots + P_n)$ . An operator function A belongs to the spectral class generated by D at  $\lambda_0$  if and only if  $A(\lambda)$  is bijective for  $\lambda$  near  $\lambda_0$ ,  $A(\lambda_0)$  is Fredholm and the partial multiplicities of A at  $\lambda_0$  are given by the numbers  $k_1, \dots, k_n$  (see [5]). Other examples of spectral classes can be found in [1] and [7].

The problem of finding the simplest representative of a spectral class containing a given operator function A has many variants. One possibility is to look for functions of the form  $T - \lambda I$ . It is clear that in this way the problem is not always solvable. However after a suitable extension of the operator function Aand the underlying spaces the problem has a positive solution.

If Z is a Banach space, the Z-extension of A is the operator function whose value at  $\lambda$  is the operator  $A(\lambda) \oplus I_Z$  in  $L(X \oplus Z, Y \oplus Z)$ , i.e., the direct sum of

AMS (MOS) subject classifications (1970). Primary 47A10; Secondary 47A20, 47A50, 47B30, 30A96.

Key words and phrases. Spectral classification of operators and operator functions, Fredholm operators, equivalence, extension, linearization.

<sup>&</sup>lt;sup>1</sup>Partially supported by an NSF grant.

 $A(\lambda)$  in L(X, Y) and the identity operator  $I_Z$  on Z.

THEOREM 1. Let  $\Omega$  be a domain in C whose boundary is the union of a finite number of nonintersecting Jordan curves, and let A be an operator function, holomorphic on  $\Omega$  and continuous on the closure  $\overline{\Omega}$ , with values in L(X, Y). Then there exists a Banach space Z such that the Z-extension of A is equivalent on  $\Omega$  to a linear bundle  $T - \lambda I$ .

In the case X = Y the operator T in Theorem 1 can be chosen to be the operator on the space of all X-valued continuous functions on the boundary  $\Gamma$  of  $\Omega$  defined by

$$(Tf)(z) = zf(z) - (2\pi i)^{-1} \int_{\Gamma} [I - A(\zeta)] f(\zeta) d\zeta.$$

Here we assume 0 to be a point in  $\Omega$ .

The next theorem is helpful in finding the simplest representative in a given spectral class. By definition the *singular set* of an operator function B is the set of all  $\lambda$  in the domain of B such that  $B(\lambda)$  is not bijective.

THEOREM 2. Let  $\Omega$  and A be as in Theorem 1, except that A has values in L(X). Suppose that  $A(\cdot) = A_1(\cdot)A_2(\cdot) \cdots A_n(\cdot)$ , where each  $A_j$  is holomorphic on  $\Omega$  and continuous on  $\overline{\Omega}$ , with values in L(X). Suppose that the singular sets of  $A_1, \ldots, A_n$  are pairwise disjoint compact subsets of  $\Omega$ . Then the  $X^{n-1}$ -extension of A is equivalent on  $\Omega$  to the function on  $X \oplus \cdots \oplus X$ whose value at  $\lambda$  is the direct sum operator  $A_1(\lambda) \oplus \cdots \oplus A_n(\lambda)$ .

The proof of Theorem 2 is based on the next theorem, which in turn is proved by using Theorem 1 and a result of [6] (see also [2]).

THEOREM 3. Let  $\Omega$  be a domain in C whose boundary is the union of a finite number of nonintersecting Jordan curves. Let  $A, B: \Omega \to L(X)$  be holomorphic on  $\Omega$  and continuous on  $\overline{\Omega}$ , and suppose that the singular sets of A and B are disjoint compact subsets of  $\Omega$ . Then given a holomorphic function C:  $\Omega \to L(X)$ , there exist holomorphic functions Z, W:  $\Omega \to L(X)$ , such that  $A(\lambda)Z(\lambda) + W(\lambda)B(\lambda) = C(\lambda), \lambda \in \Omega$ .

With regard to the definition of equivalence several other problems can be mentioned. First of all there is the problem about the connection between "global" equivalence on  $\Omega$  and "local" equivalence on a neighbourhood of each point in  $\Omega$ . In general the two types of equivalence are not the same. This follows from a counterexample in [4, §10]. (This counterexample deals with a holomorphic operator function  $P(\cdot)$ , defined on a nonsimply connected domain  $\Omega$ , whose values are projections of a Banach space with a nonconnected general linear group. This function  $P(\cdot)$  is equivalent to the same fixed projection Q on a neighbourhood of each point of  $\Omega$ , but not on the whole of  $\Omega$ .) Recently

J. Leiterer has constructed an example of a simply connected domain  $\Omega$  and two holomorphic operator functions A and B on  $\Omega$ , with values in a separable Hilbert space such that A and B are locally equivalent at each point of  $\Omega$ , and, in addition, there exists an infinitely differentiable function C on  $\Omega$  whose values are bijective operators such that  $A(\lambda) = C(\lambda)B(\lambda)$  for  $\lambda \in \Omega$ . However A and B are not globally equivalent on  $\Omega$ .

After these two examples the following problem remains open: Under what conditions does "local" equivalence on a neighbourhood of each point in  $\Omega$  imply "global" equivalence on  $\Omega$ . This problem is of particular interest if the operator functions A and B are of the form  $A(\lambda) = T - \lambda I$  and  $B(\lambda) = S - \lambda I$ . Another problem which is still open is the question whether equivalence of  $T - \lambda I$  and  $S - \lambda I$  on a sufficiently large open disc implies similarity of T and S. The last two problems have positive solutions in the finite dimensional case and some other special cases.

## REFERENCES

1. H. Bart, M. A. Kaashoek and D. C. Lay, *Relative inverses of meromorphic oper*ator functions, Univ. of Maryland Tech. Report # TR 74-71, 1974.

2. Ju. L. Daleckiĭ and M. G. Kreĭn, *Stability of solutions of differential equations in Banach space*, "Nauka", Moscow, 1970; English transl., Transl. Math. Monographs, vol. 43, Amer. Math. Soc., Providence, R. I., 1975. MR 50 # 5125, 5126.

3. I. C. Gohberg, On some topics of spectral theory of finite-meromorphic operator functions, Izv. Akad. Nauk Armjan S.S.R. 6 (1971), 160-181 (Russian).

4. I. C. Gohberg and J. Leiterer, Cocycles, operator-valued functions and families of subspaces, Mat. Issled 8 (1973), vyp. 2 (28), 23-56, 188 (Russian). MR 49 # 1121.

5. I. C. Gohberg and E. I. Sigal, An operator generalization of the logarithmic residue theorem and the theorem of Rouché, Mat. Sbornik 84 (126) (1971), 607-629 = Math. USSR Sbornik 13 (1971), 603-625. MR 47 # 2409.

6. M. Rosenblum, On the operator equation BX - XA = Q, Duke Math. J. 23 (1956), 263-269. MR 18, 54.

7. E. I. Sigal, Factor multiplicity of the characteristic number of a meromorphic operator function, Mat. Issled. 5 (1970), vyp. 4 (18), 136–152. (Russian) MR 44 # 2073.

DEPARTMENT OF MATHEMATICS, TEL-AVIV UNIVERSITY, RAMAT-AVIV, TEL-AVIV, ISRAEL

WISKUNDIG SEMINARIUM, VRIJE UNIVERSITEIT, AMSTERDAM-11, THE NETH-ERLANDS

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF MARYLAND, COLLEGE PARK, MARYLAND 20742