BLASCHKE PRODUCTS GENERATE H **

BY DONALD E. MARSHALL¹

Communicated by Robert G. Bartle, January 26, 1976

- 1. Introduction. Let H^{∞} be the algebra of bounded analytic functions on the unit disc Δ in the complex plane. By Fatou's theorem, every function $f \in H^{\infty}$ has a nontangential limit $f(e^{i\theta})$ almost everywhere on $\partial \Delta$. By identifying each H^{∞} function with its boundary-value function, we can view H^{∞} as a uniformly closed subalgebra of $L^{\infty}(\partial \Delta, d\theta/2\pi)$. An inner function is a function $u \in H^{\infty}$ such that $|u(e^{i\theta})| = 1$ almost everywhere. Let J be the smallest uniformly closed subalgebra of H^{∞} containing all inner functions. In [2] and [4], the problem of identifying J arose.
 - 2. Main result. A Blaschke product b is an inner function of the form

$$b(z) = c \prod_{n=1}^{\infty} \frac{|z_n|}{-\overline{z}_n} \left(\frac{z - \overline{z}_n}{1 - \overline{z}_n z} \right)$$

where |c|=1, $z_n\in\Delta$ and $\Sigma(1-|z_n|)<\infty$. Frostman [9] has shown that every inner function can be uniformly approximated by Blaschke products. Carathéodory [3] has shown that every H^∞ function with norm ≤ 1 can be approximated uniformly on compact subsets of Δ with finite Blaschke products. The following theorem can be viewed as a generalization of his result.

THEOREM 1. Finite linear combinations of Blaschke products are uniformly dense in H^{∞} .

To accomplish the proof, we introduce an auxiliary subalgebra of H^{∞} . We let

$$N = \{ f \in H^{\infty} : \overline{f} u \in H^{\infty} \text{ for some inner function } u \}.$$

The reason for the terminology is that a function $f \in H^{\infty}$ is in N if and only if $f(e^{i\theta})$ is the boundary-value function of a function from the Nevanlinna class on $\{z\colon |z|>1\}$. In other words, each $f\in N$ has a "pseudocontinuation" to the whole Riemann sphere. Indeed if $f\in N$ and $\overline{f}u=g\in H^{\infty}$, then

AMS (MOS) subject classifications (1970). Primary 30A76, 30A78, 30A82; Secondary 46J10, 46J15.

Key words and phrases. Blaschke products, inner functions, bounded analytic functions, H^{∞} , uniform approximation, pseudocontinuation, uniform algebras, convex hull.

1 This paper was supported in part by National Science Foundation Grant MPS 74-7035.

$$f(e^{i\theta}) = \lim_{r \to 1^+} \overline{g(1/\overline{z})/u(1/\overline{z})}$$
 $z = re^{i\theta}$ (a.e.).

To see the converse, notice that there is an $h \in H^2$ such that $\overline{f}h \in H^2$. The set of all such functions h is a closed subspace of H^2 invariant under the shift operator. By Beurling's theorem, it contains an inner function. These observations were first made in [5].

Alain Bernard has shown that N is a dense subalgebra of J. The proof runs as follows: It is clear that N is an algebra. Also if u_1, \ldots, u_n are inner functions and $f = \sum \lambda_i u_i$, $\lambda_i \in \mathbb{C}$, then setting $u = \Pi u_i$, we see that $\overline{f}u \in H^{\infty}$. Now if $f \in H^{\infty}$ with $\overline{f}u \in H^{\infty}$ and $\|f\| < 1$, then for all real t

$$f_t = (f + ue^{it})/(1 + \overline{f}ue^{it}) \in H^{\infty}$$

and f_t is an inner function. But

$$f = \frac{1}{2\pi} \int_0^{2\pi} f_t dt$$

and as ||f|| < 1, the integral converges uniformly on $[0, 2\pi]$. Some Riemann sums now give an approximation to f by convex combinations of inner functions.

To prove Theorem 1, let $f \in H^{\infty}$. Douglas and Rudin [4] have shown that for every $\epsilon > 0$ there exist Blaschke products b_0, \ldots, b_n and $\lambda_i \in \mathbb{C}$ such that

$$\left|\left| f - \left(\sum_{i=1}^n \lambda_i b_i\right) \middle/ b_0 \right|\right| < \epsilon.$$

Let $g = \sum_{i=1}^n \lambda_i b_i$. Then the coset $-g/\epsilon + b_0 H^\infty$ has norm < 1. By Nevanlinna's theorem, Satz 7 of [10], there is an inner function v such that $\epsilon v = -g + b_0 h$, for some $h \in H^\infty$. Now $v \in N$ and $g \in N$ and N is an algebra, so there is an inner function u with $\overline{b_0 h} u \in H^\infty$. Notice that $\overline{h} u = \overline{b_0 h} u \cdot b_0 \in H^\infty$, so that $h \in N$. Finally,

$$\|h-f\| = \|b_0h-b_0f\| \le \|b_0h-g\| + \|g-b_0f\| < 2\epsilon,$$

proving Theorem 1.

COROLLARY. The set of H^{∞} functions which have a pseudocontinuation to $\{z: |z| > 1\}$ are uniformly dense in H^{∞} .

Bernard used his idea to prove the following general theorem, which contains results of Phelps [11], Sine [13], Fisher [6], [7], [8], and Rudin [12].

THEOREM (BERNARD). If A is a uniform algebra generated by unimodular functions, then the closed unit ball of A is the norm-closed convex hull of the unimodular functions in A.

COROLLARY. The norm-closed convex hull of the Blaschke products is the closed unit ball of H^{∞} .

In [1], similar results will be proved for more general domains than the unit disc and for weak-* closed logmodular uniform algebras.

REFERENCES

- 1. A. Bernard, J. B. Garnett, and D. E. Marshall, Algebras generated by inner functions, J. Functional Analysis (to appear).
 - 2. F. T. Birtel, ed., Function algebras, Scott, Foresman, Glenview, Ill., 1966.
- 3. C. Carathéodory, Theory of functions of a complex variable, Vol. II, Chelsea, New York, 1960.
- 4. R. G. Douglas and W. Rudin, Approximation by inner functions, Pacific J. Math. 31 (1969), 313-320. MR 40 #7814.
- 5. R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), Fasc. 1, 37-76. MR 42 #5088.
- 6. S. Fisher, The convex hull of the finite Blaschke products, Bull. Amer. Math. Soc. 74 (1968), 1128-1129. MR 38 #2316.
- 7. ———, Another theorem on convex combinations of unimodular functions, Bull. Amer. Math. Soc. 75 (1969), 1037-1039. MR 39 #5811.
- 8. ———, Approximation by unimodular functions, Canad. J. Math. 23 (1971), 257-269. MR 43 #888.
- 9. O. Frostman, Potential d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118.
- 10. R. Nevanlinna, Über beschränkte analytische Funktionen, Ann. Acad. Sci. Fenn. Ser. A 32 (1929), No. 7.
- 11. R. R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267-277. MR 31 #3890.
- 12. W. Rudin, Convex combinations of unimodular functions, Bull. Amer. Math. Soc. 75 (1969), 795-797. MR 39 #3239.
- 13. R. Sine, On a paper of Phelps, Proc. Amer. Math. Soc. 18 (1967), 484-486. MR 35 #2152.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES, CALIFORNIA 90024