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1. Introduction. Let H°° be the algebra of bounded analytic functions on 
the unit disc A in the complex plane. By Fatou's theorem, every function ƒ E 
H°° has a nontangential limit f(eld) almost everywhere on dA. By identifying 
each H°° function with its boundary-value function, we can view H°° as a uni­
formly closed subalgebra of Z,°°(3A, d6/27r). An inner function is a function u E 
H°° such that \u(eld)\ = 1 almost everywhere. Let J be the smallest uniformly 
closed subalgebra of H°° containing all inner functions. In [2] and [4] , the 
problem of identifying J arose. 

2. Main result. A Blaschke product b is an inner function of the form 

n=l Zn \ 1 ~ ZnZ J 

where Id = 1, zn E A and E(l - \zn I) < °°. Frostman [9] has shown that 
every inner function can be uniformly approximated by Blaschke products. Cara-
théodory [3] has shown that every H°° function with norm < 1 can be approxi­
mated uniformly on compact subsets of A with finite Blaschke products. The 
following theorem can be viewed as a generalization of his result. 

THEOREM 1. Finite linear combinations of Blaschke products are uniformly 
dense in H°°. 

To accomplish the proof, we introduce an auxiliary subalgebra of//00. We 
let 

TV = { ƒ E H°°: fu E H°° for some inner function w}. 

The reason for the terminology is that a function ƒ E H°° is in TV if and only if 
f(eld) is the boundary-value function of a function from the Nevanlinna class on 
{z: Izl > 1}. In other words, each ƒ E TV has a "pseudocontinuation" to the 
whole Riemann sphere. Indeed if f EN and fu — g E Z/°°, then 
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f(ew) = lim g(llz)lu(llz) z = rew (a.e.). 
r-+l + 

To see the converse, notice that there is an h E H2 such that fh GH2. The 
set of all such functions h is a closed subspace of H2 invariant under the shift 
operator. By Beurling's theorem, it contains an inner function. These observa­
tions were first made in [5]. 

Alain Bernard has shown that TV is a dense subalgebra of J. The proof runs 
as follows: It is clear that N is an algebra. Also if ux,. . . , un are inner functions 
and ƒ = ^\uv \. E C, then setting u = Uu^ we see that fu E H°°. Now if ƒ E 
H°° with ƒu E H°° and 11/11 < 1, then for all real t 

ft = (f+We / f) / ( l +fueit)eH°° 

and ft is an inner function. But 

1 f27r 

f=T. Jo '** 
and as 11/11 < 1, the integral converges uniformly on [0, 2n]. Some Riemann 
sums now give an approximation to / b y convex combinations of inner functions. 

To prove Theorem 1, let ƒ E H°°. Douglas and Rudin [4] have shown that 
for every e > 0 there exist Blaschke products b0, . . . , bn and A,- E C such that 

< € . H £ \M/*o 
i = i 

Let g = S"= 1 X.Z?.. Then the coset -g/e + Z>0#°° has norm < 1. By Nevanlin-
na's theorem, Satz 7 of [10], there is an inner function v such that ev = -g + 
Z?0/z, for some /* E//°° . Now u E N and g GN and TV is an algebra, so there is 
an inner function u with b0hu E//°°. Notice that hu = &0/*w • Z>0 E //°°, so 
that /* E TV. Finally, 

lift - / I l = \\b0h - Z>0/ll < \\b0h -g\\ + II* - b0f\\ < 2e, 

proving Theorem 1. 

COROLLARY. 77ze sef of H°° functions which have a pseudocontinuation 

to {z: \z\ > 1} are uniformly dense in H°°. 

Bernard used his idea to prove the following general theorem, which con­
tains results of Phelps [11], Sine [13], Fisher [6], [7], [8], and Rudin [12]. 

THEOREM (BERNARD). If A is a uniform algebra generated by unimodular 
functions, then the closed unit ball of A is the norm-closed convex hull of the 
unimodular functions in A. 
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COROLLARY. The norm-closed convex hull of the Blaschke products is 
the closed unit ball of H°°. 

In [1], similar results will be proved for more general domains than the 
unit disc and for weak-* closed logmodular uniform algebras. 
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