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. Introduction. In 1879, Picard discovered the following spectacular 

THE LITTLE PICARD THEOREM. If a function f(z) holomorphic in \z\<<*> 
misses two values, say 0 and 1, then f(z) is constant. 

THE GREAT PICARD THEOREM. If a function f(z) holomorphic in 0<\z\<r 
misses two values, say 0 and 1, then z = 0 is either a removable singularity or 
a pole. 

The original proofs of these theorems involved the use of the modular 
function À :H—»C-{0, 1}, where H denotes the upper half-plane 
{z = x+iy; y>0}. Subsequent successful efforts by E. Borel, Landau, 
Schottky, Montel, Bloch and others to find so-called "elementary" proofs 
(i.e., proofs free of the modular function) greatly enriched the theory of 
functions. 

In his epoch making paper of 1925, R. Nevanlinna established the theory 
of value distributions. The so-called defect relation for a meromorphic 
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function f(z), |z|<<» (i.e., a holomorphic map /:C—>Pi(C)) states that if ƒ is 
not a constant, then 

(1.1) Z 8 ( / , a ) ^ 2 , 
aGPi(C) 

where 8(f, a) is the defect of the value a. Without giving the definition of the 
defect 8(f, a), we say simply that ô(f, a) is a number between 0 and 1 which 
measures how frequently the value a is taken (or rather not taken) by the 
function ƒ. Thus, 8(f, a)=l if ƒ misses the value a completely while 
8(f, a) = 0 if ƒ takes the value a as often as any other value. If ƒ misses three 
values, say oo, 0 and 1, then 8(f, <») = 8(/, 0) = 8(/, 1)=1, and the defect 
relation implies that ƒ is a constant. It may be said that the theory of 
Nevanlinna is concerned with the quantitative measurement of the value 
distribution of ƒ while the earlier results of Picard and others are qualitative 
in nature. 

As early as in 1897, E. Borel generalized the little Picard theorem to 
holomorphic maps of C into the complement of n+2 hyperplanes H„ 
j = 0 , 1, • • • , n + 1, in the projective space Pn(C). Subsequently, Bloch in 
1926 and H. Cartan in 1928 obtained more precise results by considering 
holomorphic maps of the unit disk into Pn(C)— \J Hh On the other hand, 
Nevanlinna's quantitative results have been also extended to holomorphic 
maps of C into Pn(C); the value distribution theory for holomorphic curves 
in Pn(C) were initiated by H. and J. Weyl in 1938 and were essentially 
completed by Ahlfors in 1941. In the meantime, it has become increasingly 
clear owing to a series of Ahlfors' papers in 1929-1936 and more recent 
papers of Chern and others that one gets the best view of the subject by 
looking from the differential geometric standpoint. 

This paper is a report on qualitative results in the higher dimensional 
value distribution theory which can be best described in terms of certain 
intrinsic metrics and measures. We shall make a few brief comments on 
quantitative results in the last section of the paper. 

To explain the content of the paper further, a good place to start is 
Ahlfors' paper of 1938 [1] in which he uncovers the differential geometric 
character of the Schwarz lemma. Let D be the unit disk with the Poincaré 
metric ds2 of Gaussian curvature - 1 and let X be a Riemann surface with a 
hermitian metric dsx of Gaussian curvature ^ - 1 . Then every holomorphic 
map f:D—»X is distance-decreasing, i.e., f*dsx^ds2 on D. When X=D and 
dsx=ds2, this is nothing but the classical Schwarz-Pick lemma. It follows 
easily that for such a Riemann surface X every holomorphic map /:C—»X is 
a constant. Thus an "elementary" proof of the little Picard theorem may be 
obtained by constructing a metric dsx of curvature ^ - 1 on X = C-{0, 1}. 
(On the other hand, if we make use of the modular function À, we get a 
metric of curvature precisely equal to - 1 on X = C - { 0 , 1} from the Poincaré 
metric of the upper half-plane H.) Viewing the Schwarz-Pick-Ahlfors lemma 
from a different angle, we consider all pseudo-distances on a Riemann 
surface or, more generally, a complex space X which makes every 
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holomorphic map f : D - > X distance-decreasing and take the largest one. 
Then we ask if this intrinsically defined pseudo-distance dx is actually a 
distance. Then the result of Ahlfors can be viewed as a theorem providing a 
differential geometric sufficient condition for dx to be a distance. We say 
that a complex space X is (complete) hyperbolic if dx is a (complete) 
distance. Corresponding to the generalized Schwarz-Pick lemma for 
holomorphic maps from a polydisk into a complex manifold of the same 
dimension, we can introduce an analogous intrinsic measure or pseudo-
volume form ^ x on a complex manifold X. There are a number of general 
results on the pseudo-distance dx and the pseudo-volume form ^Fx. But 
deeper and more interesting problems seem to be those of determining or, 
at least, estimating dx and ^ x for individual X. While the pseudo-volume 
form ^x is positive everywhere for a large class of complex manifolds, the 
pseudo-distance dx is often partially degenerate, and it is important to 
determine where dx degenerates. 

Beyond immediate applications to geometric function theory of several 
complex variables, in particular, to generalized Picard theorems, dx and ^ x 

have found their ways into algebraic manifolds (particularly of general type), 
Teichmüller spaces and higher dimensional Diophantine geometry. 

Since much of general basic results are in my monograph Hyperbolic 
manifolds and holomorphic mappings, our emphasis here is on recent prog­
ress, examples and unsolved problems. Examples represent the most impor­
tant aspect of the theory. 

I tried to assemble a reasonably complete bibliography on all work done 
on hyperbolic manifolds and related subjects, supplementing the biblio­
graphy of my monograph; the list of about 190 papers and books in this 
report contains approximately 50 of the 133 articles mentioned in my 
monograph. But I fear, because of a large number of papers involved, I 
overlooked quite a few. Since our main interests are in higher dimensional 
complex manifolds, papers on functions of one variable are completely 
disregarded unless they have a direct bearing on our theory. Results in 
Nevanlinna theory are mentioned only in passing and references on this 
subject are far from being complete even in the higher dimensional case. 

During the preparation of this report, I had numerous useful conversa­
tions with S. S. Roan on algebraic geometric aspects of the theory. 

2. Intrinsic pseudo-distances. Let D denote the unit disk {z eC; | z |< l} 
in C with Poincaré metric 

(2.1) ds2 = 4dzdz/(l-\z\2)2 

of Gaussian curvature — 1. Let p denote the distance function defined by ds2. 
Then the classical lemma of Schwarz, reformulated geometrically by Pick, 
states: 

THEOREM 2.1. Every holomorphic map f:D-*D is distance-decreasing, 
that is, f*ds2^ds2, or equivalently, 

p(f(z),f(z'))^p(z,zf) forz,z'eD. 
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This is perhaps the most basic result in the geometric theory of functions. 
Carathéodory [1], [2] was the first to generalize the Schwarz-Pick lemma to 
holomorphic maps between higher dimensional domains. Given a complex 
space X, let Hol(X, D) denote the family of holomorphic maps ƒ : X - ^ D . He 
defined a pseudo-distance cx on X by 

(2.2) cx(p, q) = sup p(f(p), f(q)) for p, q e X, 
ƒ 

where the supremum is taken over all f e H ( X , D). (An argument using 
normal families shows that this supremum is actually achieved by a certain 
map ƒ.) Carathéodory was primarily interested in bounded domains in Cn, 
for which his pseudo-distance is a bona fide distance. But cx(p, q) can be, in 
general, zero even when p and q are distinct. In fact, cx vanishes identically 
if X = C (Liouville's theorem) or if X is compact (the maximal principle). 
From the definition of the Carathéodory pseudo-distance it follows im­
mediately that if X and Y are two complex spaces, then 

(2.3) cY(f(p), f(q)) ^ cx(p, q) for ƒ e Hol(X, Y), p, q e X, 

that is, f : X - > Y is distance-decreasing. The fact that the Carathéodory 
pseudo-distance generalizes the Poincaré distance p, i.e., 

(2.4) cD = p 

is easily seen to be essentially equivalent to the Schwarz-Pick lemma. 
In studying the Carathéodory pseudo-distance, it is convenient to consider 

also its infinitesimal form. We define 

(2.5) Ex(v) = sup \\U(v)\\ for v e T(X), 
f 

where ||f*(u)|| is the length of the tangent vector f*(u) of D measured by the 
Poincaré metric ds2 and the supremum is taken over all feHol(X, D). 
Corresponding to (2.3) and (2.4), we have 

(2.6) EY(f*(v)) ^ Ex(v) for ƒ e Hol(X, Y), v e T(X), 

and 

(2.7) E2
D=ds2. 

Shortly after Carathéodory, another intrinsic metric was introduced by 
Bergman [1]. He was also mainly interested in bounded domains in Cn. 
Adapting his construction to a complex manifold X, let H be the Hilbert 
space of square-integrable holomorphic n -forms co on X (where n = dim X): 

(2.8) H = |holomorphic n-forms co; (V-l)n2co ACÖ < ° ° | . 

Using a complete orthonormal basis coo, coi, • • • for H, we define the Berg­
man kernel form by 

(2.9) Bx = t ( V - i r ^ A ^ . 
J = 0 

In general, Bx is a pseudo-volume form, that is, it might vanish at some 
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point (or even identically). If Bx is strictly positive everywhere, we set 

(2.10) ds2x= 2 X gjc dzj dzk with g* = d2 log B/dzj dz\ 

where B is the coefficient of Bx with respect to a local coordinate system 
z1, • • • , zn of X, i.e., 

(2.11) Bx = (V /-l)n 2Bdz1A-- -AdznAdzlA- -Adzn. 

In general, dsx is positive semi-definite. When H is very ample in a suitable 
sense, dsx is positive definite and is a Kâhler metric on X. Then it is called 
the Bergman metric of X. In particular, when X is a bounded domain in Cn, 
dsx is positive definite. 

Finally, we introduce another intrinsic pseudo-distance dx, which will be 
the main subject of this paper. Given two points p, q of a complex space X, 
we consider a chain of holomorphic disks from p to q, that is, a chain of 
points p = po, pi, * * * , pk = q of X, pairs of points ai, bi, • • • , at, bk of D and 
holomorphic maps fi, • • • , fk eHol(D, X) such that 

(2.12) fi(cii) = pi-i and /i(bi) = pt for i = 1, • • • , k. 

The length of this chain is defined to be 

(2.13) p(ai, bi) + - • - + p(ak,bk). 

The distance dx(p, q) is given by 

(2.14) dx(p,q) = inf(p(ai,bi) + - • - H - p ^ b O ) , 

where the infimum is taken over all chains of holomorphic disks from p to q. 
As in the case of the Carathéodory pseudo-distance, dx(p, q) can be zero 
even when p and q are distinct. In fact, it is easy to verify that 

(2.15) dc(p, q) = 0, p , q e C . 

From definition (2.14) we see that dx is defined in a manner "dual" to cx. 
The following construction of the infinitesimal form of dx will make this 
duality more apparent. We define (at least when X is nonsingular) 

(2.16) Fx(v) = inf{||u||; u e T(D) and f*(u) = v} for v e T(X), 
ƒ 

where ||u|| denotes the length of the tangent vector u measured by the 
Poincaré metric ds2 of D and the infimum is taken over all feHol(D, X) 
and ueT(D) such that f*(u) = v. Corresponding to (2.3), (2.4), (2.6) and 
(2.7), we obtain immediately 

(2.17) dv(/(p), f(q)) ^ dx(p, q) for ƒ 6 Hol(X, Y), p,qeX; 

(2.18) dD = p; 

(2.19) F Y ( / * ( D ) ) ^ F X ( U ) for / G H O 1 ( X , Y), u e T ( X ) ; 

(2.20) F ^ = d s 2 . 

We have thus constructed three (pseudo-)distances ds2
x, cx and dx, which 

are all intrinsic invariants of the complex structure of X They all generalize 



362 SHOSHICHI KOBAYASHI 

the Poincaré metric of the unit disk. The Bergman metric dsx has the 
advantage of being a Kahler metric while Cx and dx are not very smooth in 
general. On the other hand, both cx and dx have the advantage of being 
defined on any complex space X (singular or nonsingular, finite or infinite 
dimensional), albeit degenerate in some cases while dsx can be defined only 
for a limited class of complex manifolds. Moreover, the distance-decreasing 
properties (2.3) and (2.17) make cx and dY particularly useful in studying 
holomorphic maps. They are the two extreme pseudo-distances with respect 
to this property in the following sense: 

THEOREM 2.2. Let X be a complex space. 
(1) If 8x is a pseudo-distance such that p(f(p), f(q))^8x(p, q) for p,qeX 

and f e Hol(X, D), then cx(p, q)^Éôx(p, q) for all p, q e X; 
(2) If 8X is a pseudo-distance such that 8x(f(a), f(b))^p(a, b) for a,beD 

and f G Hol(D, X), then 8x(p, q)^dx(p, q) for all p,qeX. 

This theorem characterizes both cx and dx and can be used to define 
them. In particular, we have 

(2.21) Cx(p, q )^dx(p ,q ) f o r p , q e X . 

A little more generally, suppose we are given a family^of complex spaces of 
which the unit disk D is a member and a pseudo-distance 8X for each 
member X of the family % such that 8D = p and 

(2.22) ôy ( f (p ) , / (q ) )^Mp,q ) for p, q G X G « , Y e < € , f eHol(X, Y); 

then 

(2.23) cx^8x^dx forXe«. 

The intrinsic pseudo-distance introduced by Chern, Levine and Nirenberg 
[1] is such a pseudo-distance and hence lies between cx and dx. 

If X and Y are complex manifolds for which the Bergman metrics dsx and 
dsy exist, then the Bergman metric exists for X x Y and it is given by 
dsx+dsy. Thus X x Y is the Kahlerian product of X and Y On the other 
hand, we have (see Royden [1]) 

THEOREM 2.3. For any two complex spaces X and Y, we have 

(1) CxxY((p, q), (p\ q')) = Max{cx(p, p'), cY(q, q')} for p, p' e X, q, q'G Y; 

(2) dxxv((p, q), (p\ q')) = Max{dx(p, p'), dv(q, q')} for p, p' G X, q, q' e Y. 

For the corresponding infinitesimal pseudo-metrics, we have 

(3) EXXY(U, V) = Max{Ex(u), EY(v)} for u G T(X), V e T(Y); 

(4) FXXY(U, V) = Max{Fx(u), FY(v)} for u e T(X), v e T(Y). 

This theorem implies that CXXY and dXxv cannot be smooth except in the 
trivial case. 

Let X' be a (not necessarily closed) complex subspace of an arbitrary 
complex subspace X. From the distance-decreasing property of the injection 
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X'—>X, we obtain 

(2.24) ex' ^ ex and dX' ^ dx on X'. 

But we have 

THEOREM 2.4. (1) If X is norma! and A = X - X ' is contained in an 
analytic subset of codimension at least 1 in X, then cx=cx on X'; 

(2) If X is a complex manifold whose tangent bundle is spanned by its 
global holomorphic sections and if A = X-X' is contained in an analytic 
subset of codimension at least 2, then dx=dx on X';2 

(3) If X is a complex manifold with the Bergman metric dsx and if 
A = X—X' is contained in an analytic subset of codimension at least 1, then 
dsx=dsx on X'. 

(1) follows from Riemann's extension theorem. (2) is in Campbell and 
Ogawa [1] and is applicable to a domain in Cn. (3) is in Bremermann [1]. 
Generally, dx is more sensitive to the removal of analytic subsets. 

Perhaps the most striking difference between cx and dx is given by 

THEOREM 2.5. Let X be a covering space of a complex space X with 
projection TT:X—»X. Then 

dx(p, q) = dx(Tr~\p), 7T_1(q)) for p, q € X. 

Infinitesimally, we have Fx = ir*Fx. 

This follows from the fact that every map f:D—>X lifts to a map 
f:D—>X. The theorem fails completely for cx and dsx . 

The concept of an inner distance of Rinow [1] will clarify some points 
concerning cx, dx, Ex and Fx . In general, let X be a topological space with a 
pseudo-distance function d. Given a curve 7(f), a^t^b, in X, its length 
L(y) is defined by 

(2.25) L( 7 ) = supXd(7(ti-i),Y(fc)), 

where the supremum is taken over all subdivisions a = to<ti< • • • <tk = b of 
the interval [a, b]. A curve 7 is said to be recusable if its length is finite. 
Assume that X is finitely arcwise connected in the sense that every pair of 
points x, y of X can be joined by a rectifiable curve. Then we can define a 
new pseudo-distance d\ called the inner distance induced by d, by setting 

(2.26) dl(x, y) = infL(7), 

where the infimum is taken over all rectifiable curves from x to y. It follows 
immediately that d^d1 but that the arc-length V defined by dl coincides 
with L. We say that d is inner if d = d\ The terminology is consistent since dl 

is inner, i.e., dl = (dl)\ 
Now we can state 

2 According to Howard and Ochiai, the first condition is not necessary. This implies Theorem 
3.11. 
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THEOREM 2.6. Let X be a complex space. Then 
(1) The pseudo-metric Fx is upper - semicontinuous on T(X), and the 

pseudo-distance dx is the integrated form of Fx and is inner. 
(2) The pseudo-metric Ex is continuous on T(X), and the inner pseudo-

distance c x induced by cx is the integrated form of Ex. 

For the proof of (1), see Royden [1]. The fact that dx is inner can be 
directly proved rather easily (Kobayashi [5]). For (2), see ReifTen [1]. 
According to T. Barth, cx is, in general, not inner. 

Both Ex and Fx are differential pseudo-metrics in the sense of Grauert 
and Reckziegel [1] or complex Finsler pseudo-metrics in a very general 
sense. In general, a differential pseudo-metric G on X is a nonnegative 
function on T(X) such that 

(2.27) G(kv) = |A| • G(v) for v e T(X), A e C. 

For the sake of simplicity, assume that X is a complex manifold. Then it is 
sometimes convenient to write 

(2.28) G = G(z,0 

in terms of a local coordinate system z = (z1, •• -, zn) of X and the induced 
fibre coordinates £ = (£ \ • • • , ^n) of T(X). If G is twice differentiable outside 
of the zero section £ = 0 of T(X), then 

°2(z' ° = ifdK ^° 2 ( z ' 0) = ̂ x (G2(z, \o) 
( 2 - 2 9 ) 2 2 

= I G*(z, i)CÏ\ where Ga~, = * ^S*^• 

If (Gap) is positive definite, then G is said to be convex and the natural 
connection can be defined (see Kobayashi [7]). Even when G is not smooth, 
its holomorphic sectional curvature can still be defined so long as G is 
positive. Given a 1-dimensional complex subspace a of TX(X), let S be a 
piece of complex submanifold through x such that or = Tx(S). Restricting the 
metric G to the surface S, let ks(x) be the Gaussian curvature of S at x; this 
can be defined even when the (Riemannian) metric G is not smooth (see, for 
example, Rinow [1] and Reckziegel [1]). The homomorphic sectional curva­
ture kx(cr) for cr is by definition (cf. Grauert-Reckziegel [1]) 

(2.30) kx(cr) = supks(x), 

where the supremum is taken over all S such that a = Tx(S). 
All this applies to E x and Fx , but very little differential geometric study 

has been made of E x and Fx except for the paper of Reiffen [1] where the 
Finsler structure of Ex was investigated systematically. 

3. Hyperbolic complex spaces. We are naturally interested in complex 
spaces X with nontrivial dx. We say that X is hyperbolic if dx is a distance, 
i.e., dx(p, q)>0 whenever p^q . If X is hyperbolic, the topology induced by 
dx coincides with the complex space topology of X (Barth [1] and Royden 
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[1]). The hyperbolicity condition, when expressed in terms of the infinitesi­
mal metric Fx, is slightly stronger than Fx(v)>0 for all nonzero veT(X) 
(see Roy den [1]). A hyperbolic space X is complete if it is Cauchy complete 
with respect to dx. Then we have 

THEOREM 3.1. If X is a hyperbolic complex space, it is complete when and 
only when every closed bounded subset of X is compact. 

This follows from the fact that dx is an inner distance (see § 2) and from 
the following general result (Rinow [1, p. 172]). 

LEMMA. A locally compact metric space X with an inner distance d is 
Cauchy complete if and only if every closed bounded subset of X is compact. 

As immediate consequences of Theorems 2.3 and 2.5, we have 

THEOREM 3.2. If X and Y are both (complete) hyperbolic, so is X x Y. 

THEOREM 3.3. Let X be a covering space of X. Then X is (complete) 
hyperbolic if and only if X is. 

The following related result can be directly and easily proved (cf. Reck-
ziegel [1], Kaup [1], Kwack [1]). 

THEOREM 3.4. (1) Let TT\X—>X be a holomorphic map such that TT~1(X) is 
discrete for each xeX. If X is hyperbolic, so is X. 

(2) Let TT'.X^X be a proper holomorphic map such that TT-1(X) is discrete 
(and hence finite) for each xeX. If X is complete hyperbolic, so is X. 

(3) If X is the normalization of a (complete) hyperbolic space X, it is also 
(complete) hyperbolic. 

We shall be interested in complex spaces X for which dx is only partially 
degenerate since such spaces are more common than hyperbolic spaces. We 
say that X is hyperbolic modulo a subset A if dx(p, q)>0 unless p = q or 
p, q e A . In applications, the subset A is usually an analytic subset of X. A 
complex space X is said to be complete hyperbolic modulo A if it is 
hyperbolic modulo A and if for every Cauchy sequence {pn} in X with 
respect to the pseudo-distance dx we have one of the following possibilities: 

(a) {pn} converges to a point p of X; 
(b) For every open neighborhood U of A in X, there exists an integer no 

such that pneU for n^n0. 
This is probably a good place to state the principle of the little Picard 

theorem : 

THEOREM 3.5. Let X be a complex space for which dx=0. If Y is 
hyperbolic, then every holomorphic map f:X^Y is a constant map. More 
generally, if Y is hyperbolic modulo a subset A, then every holomorphic map 
f:X->Y is either constant or f(X)c:A. 

This is a trivial consequence of the fact that ƒ is distance-decreasing. 
To state the principle of the great Picard theorem, we have to introduce 

another concept. Let Y be a relatively compact, open subset of a complex 
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space Z, and A a (possibly empty) subset of Z. Then Y is said to be 
hyperbolically imbedded in Z modulo A if 

(a) Y is hyperbolic modulo AflY; 
(b) For every point p of dY ( = Y - Y ) not contained in A and every 

neighborhood U of p in Z, there is a smaller neighborhood V such that 
d Y (Vn Y? Y - U ) > 0 . We say that Y is hyperbolically imbedded in Z if it is so 
modulo the empty set A. This concept will be essential in discussing a 
generalization of the theorem of Montel on normal families. 

The principle of the great Picard theorem states: 

THEOREM 3.6. Let X be a complex manifold and A a complex subspace 
whose singularities are normal crossings. Let Y be hyperbolically imbedded in 
a complex space Z. Then every holomorphic map f:X—A->Y extends to a 
holomorphic map f:X->Z. 

The condition on A means that, locally, X = Dn and X-A = D*kxDnk 

for some k, where D * = D-{0}. Making use of Hironaka's theorem on 
resolution of singularities, we obtain 

COROLLARY 3.7. Let Xbe a complex space and A a complex subspace. Let 
Y be hyperbolically imbedded in Z. Then every meromorphic map /:X—A—» 
Y extends to a meromorphic map f:X->Z. 

If Y is already compact, then the restriction on A can be removed. 

COROLLARY 3.8. Let Xbe a complex manifold and A a complex subspace. 
Let Y be a compact hyperbolic space. Then every holomorphic map f :X-A—» 
Y extends to a holomorphic map f:X—» Y 

COROLLARY 3.9. Let X be a complex manifold and Y a compact hyper­
bolic space. Then every meromorphic map f:X—>Y is necessarily holomor­
phic. 

COROLLARY 3.10. Let X be a complex space and A a complex subspace. 
Let Y be a compact hyperbolic space. Then every meromorphic map 
f\X—A^Y extends to a meromorphic map f:X—> Y 

Corollary 3.8 was first proved by Kwack [1] and then it was generalized to 
Theorem 3.6 by Kobayashi [4] when A is nonsingular and by Kiernan [3] in 
full. The special case of dim X = dim Y=dim Z = l is in Huber [1, Satz 2]. It 
is not clear what type of theorem we can expect when Y is hyperbolically 
imbedded in Z modulo a nonempty subset A. 

Another related theorem of Kwack [1] states: 

THEOREM 3.11. Let X be a complex manifold and A a complex subspace 
of codimension at least 2. Let Y be a complete hyperbolic space. Then every 
holomorphic map / :X-A—» Y extends to a holomorphic map f:X—» Y 

For a slightly more general result, see Kobayashi [4]. 
We shall discuss later holomorphic and meromorphic extension problems 
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more systematically. We have the following analogue of Theorem 3.4. For 
the sake of simplicity, we consider the case where A is empty. 

THEOREM 3.12. Let Y be hyperbolically imbedded in Z. Let Z be a 
complex space with a proper holomorphic map ir:Z—>Z such that TT~\Z) is 
discrete (and hence finite) for each z eZ. (In particular, let Z be the normaliza­
tion of Z.) Let Y=77_1(Y). Then Y is hyperbolically imbedded in Z. 

In examining examples later we shall find that when Y is hyperbolically 
imbedded in Z, Y is often complete hyperbolic. This is based on the 
following fact (see Kiernan and Kobayashi [2]). 

THEOREM 3.13. Let Y be hyperbolically imbedded in Z modulo a subset A. 
Assume that Y is locally complete in the sense that every point p of 
dY (=Y-Y) has a neighborhood V in Z such that VHY is complete 
hyperbolic. (This assumption is satisfied if every pedY has a neighborhood V 
such that V- Y is the zero set of a single holomorphic function in V.) Then Y 
is complete hyperbolic modulo AflY. 

So far we have discussed spaces X for which dx is a distance. We want to 
comment briefly on spaces X for which cx is a distance. Let TT:X->X be a 
covering projection. In contrast to the case of dx (see Theorem 3.3), cx can 
be trivial even when cx is a distance. For example, let X be a compact 
Riemann surface of genus ^ 1 and X the unit disk. For this reason we 
introduce the concept of a Carathéodory hyperbolic (or C-hyperbolic for 
short) space. A complex space X is said to be C-hyperbolic if it has a 
covering space X such that cx is locally nondegenerate in the sense that each 
point p e X has a neighborhood V such that cx(p, q)>0 for qeV, q^p. 
Then the induced inner pseudo-distance cx is a distance. Since d x ^ c x , X is 
hyperbolic and, by Theorem 3.3, X itself is hyperbolic. (This definition is 
slightly more general than the one in my monograph where it is required 
that cx be a distance.) We say that a C-hyperbolic space X is complete if X 
is Cauchy complete with respect to cx. From dx^ck and Theorem 3.3 it 
follows that every complete C-hyperbolic space is complete hyperbolic. 

4. Metric and holomorphic completeness. In this section we consider 
only bounded domains in Cn although some of the results are valid for more 
general complex spaces. 

A metric space is said to be finitely compact if every bounded closed set is 
compact. We do not know if the Cauchy completeness of a bounded domain 
X with respect to cx implies the finite compactness with respect to cx (in 
contrast to the distance dx). We denote by H°°(X) the algebra of bounded 
holomorphic functions on X. A domain X is said to be H"-convex if it is 
convex with respect to H°°(X). I do not define here the concept of 
"generalized analytic polyhedron" (see Kobayashi [4], [6]); it suffices to say 
that it encompasses balls in Cn as well as the analytic polyhedra. Now we 
state 

THEOREM 4.1. For a bounded domain X in Cn, we have the following 
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diagram of implications: 

generalized analytic polyhedron strongly pseudo-convex 
with C2 boundary 

finitely compact in cx 

Cauchy complete in cx 

d 

complete in dx 

^ 
H°°-convex 

domain of 
bounded holomorphy 

domain of holomorphy 

Implication b is due to Graham [1]. For the remaining implications, see 
Kobayashi [4] and Sibony [1], [2]. In the 1-dimensional case, X is H°°-
convex if and only if it is a domain of bounded holomorphy, but no 
implication in either direction in higher dimensions, see Sibony [1] and 
Ahern and Schneider [1]. The punctured disk D* provides an example 
showing that (d_1) is not valid. For counterexamples to the implication (e_1), 
see Ahern and Schneider [1] as well as Sibony [1], [2]. I do not know if (c"1) 
is valid or not. 

With respect to the Bergman metric dsx, we have 

THEOREM 4.2. For a bounded domain X in Cn, we have the following 
diagram of implications : 

generalized analytic polyhedron 
strongly pseudo-convex 
with C2 boundary 

complete in ds2x 

domain of holomorphy 

For the implication k, see Wu and Greene [1] and Kerzman [1]. For j and 
1, see Bremermann [1] and Kobayashi [6]. Again, the punctured disk D* 
serves as a counterexample to (I-1). 
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The study of the boundary behavior of cx, dx and dsx is clearly relevant to 
the question of completeness with respect to these metrics. For the bound­
ary behavior of cx and dx on pseudo-convex domains, see Graham [1], For 
the boundary behavior of the Bergman metric dsx, see Diederich [1]. 

5. Intrinsic volume forms. Let X be a complex space. Then we can 
construct measures on X using the pseudo-distances Cx and dx. In general, 
given a topological space X with a pseudo-distance d and a nonnegative real 
number r, we can define the so-called r-dimensional Hausdorff measure. 

On the other hand, for each positive integer k^n (=dimX), we can 
construct two types of 2k-dimensional measures on X without using cx or 
dx but imitating the construction of cx and dx. These measures have been 
studied by Eisenman [1] and Kobayashi [4], but they have proved interest­
ing so far only in the top dimension. We shall describe them briefly in 
dimension In as differential forms of degree In rather than Borel measures 
as in the above mentioned monographs. 

Let X be a complex space of dimension n. Let D n be the unit polydisk in 
Cn with the invariant volume form JUL defined by 

n A I -J 

(5.1) ^ = n 71—[ZTÎ2V2 dzj A dz' 

with respect to the natural coordinate system z1, • • • , zn of Cn. We define an 
intrinsic pseudo-volume form 4>x generalizing JUL and analogous to the 
Carathéodory pseudo-metric Ex by setting 

(5.2) (<&x)x = sup(fV)x, 
f 

where the supremum is taken over all holomorphic maps /:X—»Dn . It is 
safer to consider <ï>x as a form defined only at the nonsingular points of X 
since the tangent space at a singular point has a higher dimension than n. 

To obtain an intrinsic pseudo-volume form tyx analogous to Fx , we set 

(5.3) (^x)x = inf(/-1)*(fi)o, 

where the infimum is taken over all holomorphic maps / : D n - > X which 
send the origin O e D n to x e X and are nondegenerate at 0. Again, ^ x is 
defined only at the regular points of X By allowing ƒ to be meromorphic 
(but holomorphic and nondegenerate at 0) in the definition above, we obtain 
another intrinsic pseudo-volume form ^ x , which will be useful in birational 
geometry (see Yau [2]). (By allowing ƒ to be meromorphic in the definition 
of Ox, we obtain nothing new since every meromorphic map f : X - » D n is 
holomorphic.) 

The basic properties of these pseudo-volume forms may be summarized 
by the following theorem. (The proofs of these assertions are similar to 
those of the corresponding statements for Ex and Fx.) 
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THEOREM 5.1. Let X and Y be complex spaces of dimension n. 

(1) ji = <&D» = ¥ D » = ¥ D S 

(2) If /:X—»Y is holomorphic, then 

/*<ï>Y±i<ï>x and f * ^ Y ^ x ; 

(3) If f :X—* Y is meromorphic, then 

/*<DY^3>X and f*yY^Vx; 

(4) If fix is any pseudo-volume form of X such that f*Clx^ii for all 
holomorphic (resp. meromorphic) maps f:Dn->X, then 

f î x ^ x (resp. flx^^x); 

(5) If fix is any pseudo-volume form on X such that f*iL^£lx for all 
holomorphic maps f:X—»Dn, then 

4>x^ax; 
(6) O x ^ t x ^ ^ x ; 

(7) If X is a covering space of X with projection ir:X—»X, then 

Vx = TT*^X and Vx = 7T*^x ; 

(8) ^ x and ^Fx are upper semicontinuous and 4>x is continuous. 

The Bergman kernel form Bx given by (2.9) is defined and smooth at the 
regular points of X. We have a weaker version of Theorem 5.1(2): 

(5.4) BX'^ Bx on X' if X' is a domain in X. 

Corresponding to Theorem 2.4, we have 

THEOREM 5.2. If X is normal and A = X—X' is contained in an analytic 
subset of codimension at least 1 in X, then 

<E>x=<I>x and BX=BX onX'. 

But we cannot expect anything like (2) of Theorem 2.4 for ^ x . 
We say that a complex space X is measure-hyperbolic (resp. meromorphi­

cally measure-hyperbolic) if ^Fx (resp. Vx) is positive outside an analytic 
subset of codimension at least 1. Then 

THEOREM 5.3. (1) Let TT'.X-^X be a holomorphic map such that TT~1(X) is 
discrete for each xeX. If X is (meromorphically) measure-hyperbolic, so is 
X; 

(2) If 7T is an unbranched covering projection, X is (meromorphically) 
measure-hyperbolic if and only if X is. 

Although I do not know a precise relation between WXXY and ^xA^V, we 
have 

THEOREM 5.4. If X and Y are (meromorphically) measure-hyperbolic, so 
is X x Y. 
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Applying (4) of Theorem 5.1 to the 2n-dimensional Hausdorff measure 
denned by dx, we obtain 

THEOREM 5.5. If a complex space X is hyperbolic modulo an analytic 
subset of codimension at least 1, it is measure-hyperbolic. 

The principle of the equidimensional little Picard theorem is given by 

THEOREM 5.6. Let Xbe a complex space such that ^ x = 0 (resp. ^ x = 0) on 
a nonempty open subset. Let Y be a measure-hyperbolic (resp. meromorphi-
cally measure-hyperbolic) complex space of the same dimension. Then every 
holomorphic (resp. meromorphic) map f:X—> Y is everywhere degenerate. 

It is easy to see that ^ x = 0 if (i) X = C x X ' , (ii) X = T x X ' , where T is a 
complex torus, (iii) X = Pk(C)xX'. More generally, if X is a complex space 
on which a complex Lie group acts, then 'VFX = 0; (this observation is due to a 
discussion with Bun Wong). To see this, take any regular point x of X which 
is not fixed by the group (which may be assumed to be the 1-parameter 
group C). Then imbed Dnl in X so that the imbedded D n l is transversal to 
the orbit of C through x. Translating the imbedded D n l along the orbit by 
the group action of C, we obtain a holomorphic map f:CxDnl—>X which 
is nondegenerate at x. Since ƒ is volume-decreasing, ^ x vanishes at x. 

6. Schwarz lemma and differential geometric criteria for 
hyperbolicity. Given a complex manifold X, it is often a difficult problem 
to determine whether or not X is hyperbolic. In this section we want to give 
differential geometric criteria for hyperbolicity and measure hyperbolicity. 
They are based on generalizations of the Schwarz lemma. 

As in §2, we denote the Poincaré metric of curvature - 1 on the unit disk 
D by ds2; see (2.1). The following generalization by Ahlfors [1] reveals the 
differential geometric nature of the Schwarz-Pick lemma. 

THEOREM 6.1. Let da2 be any hermitian pseudo-metric on D whose 
curvature is bounded above by - 1 . Then da2^ds2. 

REMARK. The term "pseudo-metric" means that da2 is only positive 
semidefinite. The assumption is that the curvature be bounded by - 1 
wherever da2 is positive. The theorem holds even when da2 is only 
continuous at zero points of da2 as long as it is twice differentiable at 
the points where it is positive. This fact is useful in applications. In 
fact, the theorem holds for an upper semicontinuous da2 with "supporting 
pseudo-metrics", for details, see Ahlors [1], [2]. 

As a consequence of Theorem 6.1, we obtain 

THEOREM 6.2. Let X be a complex manifold with a hermitian pseudo-
metric dsx. If its holomorphic sectional curvature is bounded above by — 1, 
then every holomorphic map ƒ :D—»X is distance-decreasing, i.e., ƒ* dsx=ds2 

on D. 

To prove this, one has only to apply Theorem 6.1 to da2=f* ds\. The 
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equation of Gauss-Codazzi for hermitian submanifolds implies that the 
curvature of da2 does not exceed that of dsx and makes Theorem 6.1 
applicable to do-2=f* dsx (see Kobayashi [2], [4]). 

If the holomorphic sectional curvature of dsx is bounded by a negative 
constant - A , we shall use the expression "negatively bounded curvature". 
In this case, Adsx has holomorphic sectional curvature ^=-1. 

Examining the proof of Theorem 6.2, we see that the assumption on the 
holomorphic sectional curvature was made to insure that ƒ* dsx has curva­
ture bounded above by - 1 . It is possible to extend Theorem 6.2 to a more 
general metric. Let Gx be a different pseudo-metric as in (2.27) and use the 
definition of the curvature kx defined by (2.30). Then (Grauert and Reck-
ziegel [1]) 

THEOREM 6.3. Let X be a complex manifold with a differential pseudo-
metric Gx which is twice differentiate outside the zero section of T(X). If its 
holomorphic sectional curvature kx is bounded above by - 1 , then every 
holomorphic map f:D^>X is distance-decreasing. 

Let Gx be a differential pseudo-metric as above and let A be the set of 
points x € X where Gx is degenerate, i.e., Gx(v) = 0 for some nonzero vector 
D G T X ( X ) . Let ôx be the distance function defined by G x ; it is a pseudo-
distance in general. By (2) of Theorem 2.2 and Theorem 6.3, we have 

(6.1) ôx^dx . 

Hence, we have the following criterion for hyperbolicity. 

THEOREM 6.4. Let X be a complex manifold with a differential pseudo-
metric Gx which is twice differentiate outside the zero section of T(X). If its 
holomorphic sectional curvature is negatively bounded, then X is hyperbolic 
modulo the set A of points where Gx is degenerate. If Gx is complete modulo A 
(i.e., ôx is complete modulo A), then X is complete hyperbolic modulo A. 

In order to generalize Theorem 6.1 to the case of higher dimension, we 
consider a volume form and the associated Ricci form. If X is a complex 
manifold of dimension n with local coordinate system z1, • • • , zn, then a 
pseudo-volume form vx on X can be locally written as 

(6.2) vx = V • f [ (V- l dz]
 A dz j), 

where V is a nonnegative function. If V is positive everywhere, Vx is a 
volume form of X. To each vx given by (6.2), we associate a real (1, l)-form 
Ric DM, called the associated Ricci form, as follows. 

(6.3) Ric vx = ~ddc log V = 2(-1)1/2 £ R,E dzj A dz\ 

where 

(6.4) Rjk- = - a 2 log V/dzi dzk. 

The Ricci form Ricux is defined only at the points where vx is strictly 
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positive. If vx is strictly positive everywhere, then the closed 2-form 
(47T)_1 Ric vx defines the first Chern class Ci(X) of X. If X is a hermitian 
manifold with hermitian 2-form cpx and volume form vx = cpx, then (RJH) is 
usually called the Ricci tensor. Hence the name "Ricci form" for Ric t>x. If 
dim X = l , then 

(6.5) Ric vx = KxVx, 

where Kx is the (Gaussian) curvature of X. We say that Ric vx is negative if 
the matrix (Rfi) is negative definite wherever defined. We say that it is 
negatively bounded if it is negative and if 

(6.6) Kx : = - ( - R i c vx)
n/vx ^ -c < 0 

wherever defined. 
Let D n be the unit poly disk in Cn and fx the volume form on D n defined 

by (5.1). Then 

(6.7) Ric |u = - 4 ( - l ) 1 / 2 1 n I J W dzi A dz] 

and 

(6.8) K: = - ( - R i c J H ) 7 ^ = - 1 . 

Theorem 6.1 can be generalized to D n in the following manner: 

THEOREM 6.5. Let vnn be any pseudo-volume form on Dn with negatively 
bounded Ric vD

n and normalized in such a way that 
KD» : = - ( - R i c vD

n)n/vD
n = — 1. Then vD

n = ^ 

The remark following Theorem 6.1 about differentiability applies also to 
Theorem 6.5. As a consequence of Theorem 6.5, we have the following 
equidimensional analogue of Theorem 6.2. 

THEOREM 6.6. Let X be an n-dimensional complex manifold with pseudo-
volume form vx such that Ric vx is negatively bounded and 
Kx = — (—Ric Vx)n/vx=—1. Then every meromorphic map /:Dn—>X is vol­
ume-decreasing in the sense that /*t»x=ja. 

If ƒ is holomorphic, the theorem is immediate. If ƒ is meromorphic, let S 
be the indeterminacy set for ƒ. Since Ric vx is negative, the coefficient V of 
vx is plurisubharmonic. Hence the coefficient of f*vx is a plurisubharmonic 
function on Dn-S. Since S has codimension at least 2, /*ux extends across S 
(see Grauert and Remmert [1]), and Theorem 6.5 applies to f*Ux. 

From Theorems 5.1 and 6.6 we conclude 

THEOREM 6.7. Let X and vx be as in Theorem 6.6. Then vx^^x^^x, 
where "Vx and Wx are the intrinsic pseudo-volume forms defined in §5. In 
particular, if vx is positive outside an analytic subset of codimension at least 
1, then X is measure-hyperbolic (in fact, even meromorphically measure-
hyperbolic). 

The criterion for hyperbolicity given by Theorem 6.4 is not very easy to 
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use; it is usually a major task to construct a hermitian or differential metric 
and compute its curvature. On the other hand, Theorem 6.7 is much easier 
to use partly because Ric vx can be calculated easily and partly because the 
explicit calculation of Ric ux can be avoided as we shall explain in the next 
section. 

In the preceding section we alluded to intermediate dimensional meas­
ures. But there is no theorem similar to Theorems 6.2 and 6.6 for these 
measures for lack of a suitable concept of "intermediate dimensional curva­
ture", i.e., a concept between holomorphic sectional curvature and Ricci 
curvature. Although I used the word "between", I did not mean that the 
holomorphic sectional curvature is a richer concept than the Ricci curvature. 
Nevertheless it seems likely that "negative holmorphic sectional curvature" 
implies "negative Ricci curvature"; Theorem 5.5 is certainly a supporting 
evidence. 

The generalized Schwarz lemma, Theorem 6.2, holds for domains a little 
more general than the unit disk; see Kobayashi [4], Yau [3]. However 
Theorems 6.2 and 6.3 suffice for most applications since a mapping defined 
on a general complex space can be always restricted to a small disk. This is 
true also with Theorem 6.6. 

The equidimensional Schwarz lemma in higher dimension was first ob­
tained by Dinghas [1] for maps into Einstein-Kâhler manifolds of negative 
Ricci curvature and by Chern [3] for maps into Einstein-Hermitian man­
ifolds of negative Ricci curvature. Theorem 6.6 in its general form is due to 
Kobayashi [1]. As we shall see in the next section, it is essential for algebraic 
geometric applications to be rid of Kâhler or hermitian metrics and to 
consider pseudo-volume forms directly as in Theorem 6.6. 

An interesting application of the Schwarz-Ahlfors lemma, Theorem 6.1, is 
to the problem of determining the Bloch constant; see Ahlfors [2] and 
references therein and Chern [3]. 

Attempts have been made to generalize the Schwarz lemma to harmonic 
maps between Riemannian manifolds; see Kiernan [7] and Chern and 
Goldberg [1]. 

7. Ample canonical bundles and manifolds of general type. In the 
preceding section, we stated the equidimensional Schwarz lemma for maps 
into a complex manifold carrying a pseudo-volume form with negatively 
bounded Ricci form. In this section, we shall give algebraic geometric 
criteria for the existence of such a pseudo-volume form. 

Let X be a compact complex manifold. A complex line bundle L is said to 
be very ample if it has enough holomorphic sections to induce an imbedding 
of X into a projective space in the following precise sense. Let T(L) be the 
space of holomorphic sections of L and N + l = dim T(L). For each x e X, let 
T(L)x be the subspace consisting of sections vanishing at x. Assume that, for 
each x, T(L)X^T(L) so that d imr(L) x = N. Then we obtain a map j :X^> 
P*(T(L)), where P*(T)) is the projective space of hyperplanes of T(L). (We 
used the notation P* to indicate that it is the dual projective space over 
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r(L).) The map j sends x to r(L)x . For our purpose it is convenient to fix a 
basis oo, cri, • • • , crN of T(L) and to define j as a map sending x to 
(cro(x), • • • , CTN(X))GPN(C). If j:X—> P N ( C ) is an imbedding, L is said to be 
very ample. A line bundle L is said to be ample if there exists a positive 
integer k such that Lk is very ample. 

Let K be the canonical line bundle of X, i.e., K = AnT*(X), so that the 
holomorphic sections of K are the holomorphic n-forms on X (where 
n = dimX). A holomorphic section a of Kk can be expressed locally as 

(7.1) 0- = f ( z ) ( d z 1 A - " A d z n ) k , 

where z1, • • • , zn is a local coordinate system of X and ƒ is a function 
holomorphic in the coordinate neighborhood. Let <ro, * * •, CTN be a basis of 
T(Kk) and let 

(7.2) O i = / i ( z ) ( d z 1 A - - - A d z n ) \ 

Define a pseudo-volume form ux by setting 
/ N \ 1/k 

(7 .3) U x = ( X l/il2) ( V - l ) n 2 d z 1 A - - - A d z n A d z 1 A - " A d z n . 

Symbolically we may write 
/ N \ 1/k 

(7.4) Ux = ( E | c * A â i | j . 

Assume that Kk is very ample. Then vx is a volume form and its associated 
Ricci form Ric vx is negative. In fact, if we pull back the Fubini-Study 
metric of PN(C) by j:X->PN(C), then its Kâhler form differs only by the 
sign from Ric vx. 

Conversely, if a compact complex manifold X admits a volume form vx 

with negative Ric vx, then its canonical line bundle K is ample; this is a 
consequence of the result of Kodaira [1], 

It is not known whether a compact complex manifold X with ample 
canonical line bundle K admits a Kâhler metric of negative Ricci tensor; this 
is part of the problem posed by Calabi [1]. As I have already pointed out, it 
is therefore important in Theorem 6.6 not to restrict ourselves to the volume 
form derived from a Kâhler metric. 

Theorems 6.6 and 6.7 are stated for pseudo-volume forms. Pseudo-
volume forms arise in a rather natural manner. Let X and X be n-
dimensional complex manifolds and 7r:X—»X a holomorphic map whose 
differential 7r*:T(X)—»T(X) is nondegenerate outside an analytic subset A 
of X. If vx is a volume form on X, then ir*vx is a pseudo-volume form on X 
which is positive outside A. If Ric vx is negatively bounded, so is Ric TT*VX 

(=/*(Rici;x)) outside A. For example, if we blow up a compact complex 
manifold X with ample canonical line bundle at a point or, more generally, 
along a subvariety A, then we obtain a manifold X admitting a pseudo-
volume form with negatively bounded Ricci form. The manifold X thus 
obtained is an example of an algebraic manifold of general type. 
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An n-dimensional compact complex manifold X is said to be of general 
type if its canonical line bundle K satisfies 

(7.5) sup lim - \ dim T(Km) > 0. 
m-»°° m 

This definition says that the so-called Kodaira dimension of X is equal to 
the complex dimension of X (see Iitaka [1]). Assume further that X is 
projective algebraic and let L be a very ample line bundle over X. Then (see 
Kodaira [3] and Kobayashi and Ochiai [3]) there exists a positive integer m 
such that 

(7.6) r ( K m i r V o . 

Fixing a nontrivial element a of r (K m L - 1 ) , we define an injection 

(7.7) <per (L) -*a<per (K m ) . 

Let cp0, <pi, • • * , <PN, N + l = dimT(L), be a basis for T(L). Then aâJ^L0(pi<pi 
may be considered as a C°° section of (KmL~1)L(8)(KmL~1)L = Km(8)Km and 
can be locally expressed as 

N / n \ m 

(7.8) | a ( z ) | 2 I | h , ( z ) | 2 n V - l d z k A d z k , 
i=0 \ k = l / 

where a(z), ho(z), * * * , /ÎN(Z) are locally defined holomorphic functions cor­
responding to the sections a, <p0, • • • , (pN. Then the pseudo-volume form Vx 
defined by 

( N \ 1/m / n \ 

| a ( z ) | 2 1 \hi(z)\2j ( f i V - l dzk Adz k j 
vanishes exactly where the section a vanishes, and its Ricci form Ric vx is 
negatively bounded (outside the zeroes of a ) . 

We can summarize the results of this section so far by the following 
THEOREM 7.1. For a compact complex manifold X, consider the following 

conditions : 
(1) Its canonical line bundle K is ample. 
(2) It admits a volume form vx with negatively bounded Ric vx. 
(3) ^ x is positive everywhere. 
(4) ^ x is positive everywhere. 
(1') It is a compact complex manifold of general type. 
(2') It admits a pseudo-volume form vx which is positive outside an analytic 

subset A and has negatively bounded Ric ux (outside A). 
(3') ^ x is positive outside an analytic subset A, i.e., X is meromorphically 

measure - hyperbolic. 
(4') Wx is positive outside an analytic subset A, i.e., X is measure-

hyperbolic. 
Then we have the following implications between these conditions: 

( l ) « * ( 2 ) - > ( 3 ) - ( 4 ) 
4, 4, 4, 4, 

( l ' ) - ( 2 ' ) - ( 3 ' ) - ( 4 ' ) . 
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The vertical implications are all sharp, but it is not known whether any of 
the horizontal implications is an equivalence (except (l)«-»(2)). The argu­
ment used in the proof of Theorem 6.6, i.e., extension of plurisubharmonic 
functions, shows that condition (2') is a bimeromorphic invariant. Both (1') 
and (3') are bimeromorphically invariant, but it is not clear if (4') is so. In 
deriving the implication (1')—>(2'), we use the fact that a manifold of general 
type is a Moisezon space and hence is bimeromorphic to a projective 
algebraic manifold (Moisezon [1]). (We recall that a Moisezon space is a 
compact complex space whose function fields has transcendence degree 
equal to the dimension of the space.) 

From Theorem 5.6 and the implication (1')—»(3'), we obtain 

THEOREM 7.2. Let X be an n-dimensional complex space bimeromorphic 
to a space on which a complex Lie group of positive dimension is acting. Let Y 
be an n-dimensional Moisezon space of general type. Then every meromorphic 
map f:X—» Y is everywhere degenerate. 

Iitaka [2] made the following conjecture: 
If X is a projective algebraic manifold whose universal covering space is 

Cn, then it admits an abelian variety as a finite unramified covering space. 
This is known to be true for n = 2 and Iitaka obtained partial results in 

dimension ^ 3 . He used the special case X = Cn of Theorem 7.2 to show that 
the Kodaira dimension of such a manifold is less than n. 

While we have a reasonably simple algebraic sufficient condition for 
measure-hyperbolicity, we have only the following condition for hyperbolic-
ity which is probably too strong to be useful. 

THEOREM 7.3. Let X be a compact complex manifold with ample 
cotangent bundle. Then X admits a complex Finsler metric with negative 
holomorphic bisectional curvature and, hence, is hyperbolic. 

I am using the term "ample" here in the sense most algebraic geometers 
use. For the proof, see Kobayashi [7]. 

8. Families of holomorphic and meromorphic maps. According to 
Douady [1], the family H(z) of compact complex subspaces of a complex 
space Z is, in a natural manner, a complex space (with many components). 
This is classical when Z is projective algebraic—Chow coordinates and 
Chow varieties. 

Given two complex spaces X and Y, let Hol(X, Y) (resp. Mer(X, Y)) 
denote the family of holomorphic (resp. meromorphic) maps f:X^> Y. Since 
the graph of ƒ G Mer(X, Y) is a complex subspace of X x Y, we may consider 
both Hol(X, Y) and Mer(X, Y) as complex subspaces of H(XxY) provided 
that X is compact. If X is noncompact, Hol(X, Y) can be a large set of 
infinite dimension as in the case of X=Y=Cn. 

In this section we are interested in showing that Hol(X, Y) and Mer(X, Y) 
cannot be too large if Y is hyperbolic or measure-hyperbolic. At the outset, 
it should be pointed out that Hol(X, Y) = Mer(X, Y) if Y is compact hyper­
bolic. This will be proved in §10. 
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For the following theorem, see Kobayashi [4]. 
THEOREM 8.1. Let X and Y be complex spaces. If Y is complete hyper­

bolic, then Hol(X, Y) is locally compact with respect to the compact-open 
topology. For any point peX and any compact subset KczY, the family 
Fp,K={/eHol(X, Y); f(p)eK} is compact. 

When Y is not complete, we have the following theorem of Ascoli. 

THEOREM 8.2. Let Y be hyperbolic. Then a subfamily Fc=Hol(X, Y) is 
relatively compact if and only if, for each peX, {/(p); f e F } is a relatively 
compact subset of Y. 

We say that a complex space Y is taut modulo a subset A if, for every 
complex space X and every sequence {/n} in Hol(X, Y), we have one of the 
following two possibilities: 

(a) {fn} has a subsequence which converges in Hol(X, Y); 
(b) for each compact K c X and each compact Lc=Y-A, there exists an 

integer n0 such that fn(K)nL = 0 for n^n0.
3 

According to Barth [2] it suffices to verify (a) and (b) for X = D if A = </>. 
If Y is taut modulo the empty set, Y is said to be taut. The concept of taut 

complex space was introduced by Wu [2] and Kaup [1] who used the term 
"hyperbolic". They made an extensive study of holomorphic maps into taut 
spaces. See also Reckziegel [1]. 

Concerning taut spaces and complete hyperbolic spaces, we have the 
following result of Kiernan [1] and Eisenman [2]: 

THEOREM 8.3. A complex space Y is taut if it is complete hyperbolic. It is 
hyperbolic if it is taut. 

It is believed that Y is complete hyperbolic if it is taut. This conjecture is 
supported by a number of parallel results for complete hyperbolic spaces 
and taut spaces; in addition to Wu [2] and Kaup [1], see also Barth [3]. 

To obtain a satisfactory generalization of Montel's theorem, we introduce 
another related concept. Given a relatively compact, open subset Y of a 
complex space Z and a (possibly empty) subset A of Z, we say that Y is 
tautly imbedded in Z modulo A if for every complex space X and every 
sequence {/n}<=Hol(X, Y) we have one of the following two possibilities: 

(a) {fn} has a subsequence which converges in Hol(X, Z); 
(b) for each compact KaX and each compact Lc iZ-A, there exists an 

integer n0 such that fn(K)r\L=0 for n^m. 
We say that Y is tautly imbedded in Z if it is tautly imbedded modulo the 

empty set. If A is empty, (b) is impossible since fn(K)C\L^0 for L = Y. 
Thus, Y is tautly imbedded in Z if and only if (a) holds, i.e., if and only if 
Hol(X, Y) is relatively compact in Hol(X, Z). The following result of Kier­
nan [2] may be considered as the principle of MonteVs theorem on normal 
families. 

3 T. Barth pointed out to me that this condition is stronger than the one in Kiernan-
Kobayashi [2] where X is restricted to D \ 
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THEOREM 8.4. Let Y be a relatively compact, open subset of a complex 
space Z. Then the following conditions are mutually equivalent: 

(i) Y is hyperbolically imbedded in Z ; 
(ii) Y is tautly imbedded in Z, i.e., Hol(X, Y) is relatively compact in 

Hol(X, Z) for every complex space X; 
(iii) For the unit disk D, Hol(D, Y) is relatively compact in Hol(X, Z) ; 
(iv) Given a hermitian metric dsl on Z, there is an everywhere positive 

continuous function <p on Z such that 

f*(ç • dsl) ^ dsl for all f e Hol(D, Y), 

where dsh is the Poincaré metric of D. 

When A is nonempty, our knowledge is less complete. First, we have to 
introduce two additional notions. We say that a relatively compact, open sub­
set Y in Z is locally taut (resp. locally complete) in Z if for each point z edY 
(=Y-Y) there exists a neighborhood Vz of z in Z such that V 2 n Y is taut 
(resp. complete hyperbolic). Because of Theorem 8.3, if Y is locally com­
plete in Z, then it is locally taut in Z. For applications, it is useful to know 
the following simple criterion. 

THEOREM 8.5. If Z-Y is locally defined as the zeroes of a single 
holomorphic function, then Y is locally complete (and hence locally taut) in Z. 

For the proof, see Kiernan and Kobayashi [2]. The following result is also 
in the same paper. To facilitate the comparison, we state the corresponding 
result for A = 0 at the same time. 

THEOREM 8.6. Let Y be a relatively compact, open subset of a complex 
space Z and A a subset of Z. Then we have the following diagrams of 
implications : 

taut imbd mod A 

'(a) 

taut mod A 

hyp imbd mod A 

•(b) 

complete hyp mod A 

hyp mod A 

taut imbd hyp imbd 

!(a) 

taut 

!(b) 

complete hyp 

hyp 
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In these two diagrams, the dotted vertical arrows (a) (resp. (b)) are valid under 
the assumption that Y is locally taut (resp. locally complete) in Z. 

The equivalence between (i) and (iv) in Theorem 8.4 generalizes to the 
case of nonempty A (see Kiernan and Kobayashi [2]). 

THEOREM 8.7. Let Y, Z and A be as in Theorem 8.6. Then Y is 
hyperbolically imbedded modulo A in Z if and only if, given a hermitian 
metric dsz on Z, there exists a continuous nonnegative function <p on Z such 
that 

(a) <p is strictly positive on Z - A ; 
(b) /*(<p • dsl)^dsl for all feHol(D, Y). 

At the beginning of this section, we mentioned the main result of Douady. 
In general, let X be a compact complex space and Y a complex space. Then 
we define a pseudo-distance d in Hol(X, Y) by 

(8.1) d(/ ,g) = maxdY(/(x),g(x)) for ƒ, geHol(X, Y). 

This definition is natural since Theorem 2.3 implies 

(8.2) dy"(y, y') = m^x{dY(yi,y'i)} for y = (yi, • • • , yk), y' = (yi, - • • , y0 

and since Yk = Yx • • • x Y may be considered as the set of maps from a set 
of X of k points into Y. On the other hand, Hol(X, Y) is a complex space 
with many components according to Douady. 

THEOREM 8.8. Let Xbe a compact complex space and Y a complex space. 
(1) The restriction of the pseudo-distance d defined by (8.1) to each 

connected component M of Hol(X, Y) coincides with the intrinsic pseudo-
distance JM of the complex space M; 

(2) if Y is (complete) hyperbolic, each connected component M of 
Hol(X, Y) is (complete) hyperbolic; 

(3) if Y is compact hyperbolic, Hol(X, Y) has only a finite number of 
connected components and each component is compact hyperbolic. 

We want to explain a theorem of H. Cartan which associates to each 
compact complex space X a hyperbolic quotient complex space X/R in a 
natural manner. This will allow us to reduce the study of Hol(X, Y) with 
compact X and hyperbolic Y to that of Hol(X/R, Y). 

Let % be a class of complex spaces satisfying the following two condi­
tions: 

(Pi) the product of two spaces of ^ belongs to %\ 
(P2) if X is a complex space and if, for each point x of X, there exists a 

proper holomorphic map / : X ^ > Y into space Y of the class ^ such that 
the fibre fl(f(x)) contains x as an isolated point, then X belongs to %. 

If the spaces of % are compact, (Pi, P2) is equivalent to (Pi, P2, P"), where 
(P2) any complex subspace of a space belonging to % belongs to <€; 



INTRINSIC DISTANCES AND MEASURES 3 8 1 

(Pï) if ƒ:X—> Y is a ramified covering and if Y belongs to %, then X 
belongs to c€. 

Then the theorem of H. Cartan states: 

THEOREM 8.9. Let ^ be a class satisfying (Pi) and (P2). Let X be a 
complex space for which there exists at least one space Yo in %! with a proper 
holomorphic map X—» Y0. Let R denote the equivalence relation defined on X 
by all holomorphic maps of X into the spaces Y of the class <€. ( That is, two 
points x and x' of X are equivalent if and only if f(x) = f(x') for all Ye <€ and 
all holomorphic maps /:X—> Y.) Then the space X/R is a complex space 
belonging to <e and the projection X—> X/R is proper holomorphic with 
connected fibres. 

From the construction of X/R it follows that the diagram 

X >X/R 

\ / 

V 
establishes a one-to-one correspondence between the holomorphic maps 
feHol(X, Y) and the holomorphic maps feHol (X/R, Y). 

If X is compact, the assumption in Theorem 8.9 is automatically satisfied 
since we can take any space Y0 in % and a constant map X - » Y0. We list 
several examples of classes % satisfying (Pi) and (P2). (The first three are 
due to Cartan. The fourth was given by Kaup [1]. The remaining examples 
are analogous to the fourth.) 

(1) the class %\ of all holomorphically complete spaces; 
(2) the class ^2 of all projective algebraic varieties; 
(3) the class %?, of all compact algebraic varieties; 
(4) the class % of all taut complex spaces; 
(5) the class ^5 of all hyperbolic complex spaces; 
(6) the class <#6 of all complete hyperbolic complex spaces; 
(7) the class ^7 of all compact hyperbolic complex spaces. 
So if X is a compact complex space and R is the equivalence relation on 

X defined by ^5, then X/R is defined and is compact hyperbolic. (Since X 
is compact, we obtain the same result by using ^4, ^6 or ^7.) The real 
question is how this equivalence relation is related to the equivalence 
relation defined by the pseudo-distance dx. (This problem will be discussed 
later.) 

In §3, we introduced the concept of a Carathéodory-hyperbolic or C-
hyperbolic complex space. Kaup [1] obtained many results on holomorphic 
maps into C-hyperbolic spaces. It is of interest to see if they can be 
generalized to hyperbolic spaces. We mention only one sample result of 
Kaup. 

THEOREM 8.10. Let X be a compact complex space and Y a compact 
C-hyperbolic space. Then the set of holomorphic maps f:X—>Y sending a 
given point xoeX to a given point yo e Y is finite. 



382 SHOSHICHI KOBAYASHI 

Another result of the same nature is the following theorem of Borel and 
Narasimhan [1]. 

THEOREM 8.11. Let X and Y be as in Theorem 8.10. Let f, g e Hol(X, Y). 
If the two maps have the same image point yo=f(xo) = g(xo) at some point xo of 
X and induce the same homomorphism 7Ti(X,xo)-^Tri(Y,y0) between the 
fundamental groups, then f=g. 

For mappings into a compact Riemann surface of higher genus, we have 
the following classical theorem of de Franchis (see Lang [1] and Samuel [1]). 

THEOREM 8.12. Let X be a compact complex space and Y a compact 
Riemann surface of genus greater than 1. Then the number of surjective 
meromorphic maps of X onto Y is finite. Moreover, there is a uniform upper 
bound on this number which depends on X but not on Y. 

The first statement of Theorem 8.12 was generalized by Kaup [1] to the case 
where Y is a product of compact Riemann surfaces of genus greater than 1. 
Lang [2] raised the question whether the theorem holds when Y is compact 
hyperbolic. The question has been answered under a slightly different 
assumption on Y. We have (Kobayashi and Ochiai [4]) 

THEOREM 8.13. Let Xbe a complex space and Y a compact complex space 
of general type. Then the number of surjective meromorphic maps of X onto Y 
is finite. 

For holomorphic or meromorphic maps into measure-hyperbolic man­
ifolds, we have very few results. Given a complex space X of dimension n, 
let ^ x be the intrinsic pseudo-volume form defined in §5. Define the 
intrinsic total volume Vol(X) by 

(8.3) Vol(X) = £ ^ x . 

If X is a compact Riemann surface of genus g ^ 2 , then 

(8.4) Vol(X) = 27r(2g - 2) = -2TT X (Euler number of X) 

since ^ x has curvature - 1 , i.e., Ric>ïrx = -'vïrx. 
In general, we have (Kobayashi [4, pp. 22-25], Yau [2], Pelles [1]) 

THEOREM 8.14. Let X and Y be compact complex spaces of dimension n. 
LetfeHo\(X,Y). 

(1) If Vol(X)<Vol(Y), then f is degenerate everywhere on X. 
(2) !ƒ Vol(X)<2 • Vol(Y) and ^ x > 0 on a nonempty open set, then f is 

either degenerate everywhere or a biholomorphic map from X onto Y. 

In fact, the inequality f*WY^Wx and the formula 

(8.5) degree(f) = ( £ f W ) / v o l ( Y ) 
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implies 

(8.6) degree(f)^Vol(X)/Vol(Y) for feHol(X, Y). 

In the argument above, we can replace ^ x and ^ Y by ^ x and ^ Y , 
respectively, and we set 

(8.7) Vol(X) = J ¥x , Vol(Y) = J ^Y. 

Then we obtain 

(8.8) degree(f)^Vol(X)/Vol(Y) f or ƒ e Mer(X, Y) 

provided that ^ Y > 0 on a nonempty open subset. This shows that when Y is 
compact measure-hyperbolic (resp. meromorphically measure-hyperbolic) 
we have an upper bound for the degree feHol(X, Y) (resp. feMer(X, Y)), 
although we do not know if Theorem 8.13 generalizes to a compact 
(meromorphically) measure-hyperbolic space Y or not. 

It is needless to say that Theorem 8.14 is valid for a meromorphic map 
f:X^ Y if Vol(X) and Vol(Y) are replaced by Vol(X) and Vol(Y), respec­
tively. 

Even when X and Y are not necessarily compact, the result above is still 
valid (essentially) if Vol(X)<oo and Vol(Y)<oo and if ƒ is proper; for details, 
see Yau [2]. 

We note that Theorem 8.14 applied to Riemann surfaces implies that if X 
and Y are compact Riemann surfaces and if 2^genus(X)<genus(Y), then 
there is no holomorphic map f:X->Y other than the constant maps. 

The reasoning above was used also by Kulle [2] in studying proper 
holomorphic maps of an open ball of Cn into itself. 

9. Automorphisms and endomorphisms of complex spaces. Without 
going into the general theory of automorphisms of complex manifolds (cf. 
Kobayashi [8, Chapter III]), we state the two basic theorems we shall use in 
this section. The first theorem generalizes the classical theorem of H. Cartan 
[3]> [4] for bounded domains. 

THEOREM 9.1. Let Xbe a complex hyperbolic space and Aut(X) the group 
of holomorphic automorphisms of X. Then 

(1) with respect to the compact-open topology, Aut(X) is a (real) Lie group 
of dimension at most 2n+n2, where n = d imX; 

(2) the isotropy subgroup Aut(X)x at each point xeX is compact; 
(3) the Lie algebra aut(X) of Aut(X) consists of complete (i.e., globally 

integrable) holomorphic vector fields. If uGaut(X), then V—1 • v is not in 
aut(X), i.e., it is not globally integrable. In other words, no complex Lie group 
of positive dimension acts on X effectively as a holomorphic transformation 
group. 

This is essentially a metric-topological theorem and follows from the fact 
that Aut(X) is a closed subgroup of the group of isometries of X with 
respect to dx. For the details, see Kobayashi [4, pp. 70-72], [8, pp. 77-82] 
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and Kaup [3]. For the basic properties of transformation groups on complex 
spaces (with singularities), see Kaup [4]. 

The second theorem is due to Bochner and Montgomery [1], [2]. (The 
generalization to compact complex spaces with singularities is due to Kerner 
[i].) 

THEOREM 9.2. Let Xbe a compact complex space. Then its automorphism 
group Aut(X) is a complex Lie group and its Lie algebra aut(X) consists of all 
holomorphic vector fields on X. 

Generally, if X is a complex manifold without any restriction, Aut(X) can 
be too large to be a Lie group as in the case of X = Cn with n ^ 2 . 

Let Bim(X) denote the group of bimeromorphic automorphisms of X. 
Theorem 3.11 implies the following 

THEOREM 9.3. Let X be a complete hyperbolic space. Then 
Bim(X) = Aut(X). 

It is not clear whether the completeness assumption is really necessary. 
Making an essential use of Theorem 2.3, Konrad Peters [1] obtained the 

following theorem analogous to Cartan's [6] result. 

THEOREM 9.4. Let X and Y be two hyperbolic spaces and let Aut°(*) 
denote the identity component of Aut(*). Then the natural injection 
Aut(X)xAut(Y)-»Aut(XxY) induces an isomorphism Aut°(X)xAut°(Y)= 
Aut°(XxY). 

He gives also conditions for Aut(X)xAut(Y)=Aut(Xx Y). 
From Theorems 9.1 and 9.2 we obtain the following 

THEOREM 9.5. Let X be a compact hyperbolic complex space. Then 
Aut(X) (=Bim(X)) is finite. 

We shall now discuss automorphisms of measure-hyperbolic spaces. As 
we stated at the very end of §5, we have 

THEOREM 9.6. Let X be a measure-hyperbolic complex space. Then no 
complex Lie group of positive dimension acts on X effectively as a holomorphic 
transformation group. 

This generalizes only (3) of Theorem 9.1. We do not know if Aut(X) is a 
Lie group in this case. 

From Theorems 9.2 and 9.6 we obtain a partial generalization of 
Theorem 9.5: 

THEOREM 9.7. Let X be a compact measure-hyperbolic complex space. 
Then Aut(X) is discrete. 

It is likely that Aut(X) is finite. At least, in an important special case we 
have 

THEOREM 9.8. Let X be a compact complex space of general type. Then 
Bim(X) as well as Aut(X) is finite. 
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This follows from Theorem 8.13. Theorem 9.8 has been obtained by 
Matsumura [1] purely algebraically making use of the theory of algebraic 
groups. A special case was considered earlier by Kobayashi [9] and Klaus 
Peters [1]: 

THEOREM 9.9. Let X be a compact complex manifold with ample canoni­
cal line bundle. Then Aut(X) is finite and Bim(X) = Aut(X). 

The fact that Bim(X) need not coincide with Aut(X) in Theorem 9.8 can 
be seen by blowing up a suitable point of a compact complex manifold X 
with ample canonical line bundle. 

We shall now consider holomorphic endomorphisms. The classical 
Schwarz lemma consists of two statements. If f:D->D is a holomorphic 
map with f(0) = 0, then (i) | / '(0)|^1 and (ii) the equality holds when and only 
when ƒ is biholomorphic. So far we have been concerned with only the first 
part of the Schwarz lemma. The following generalization of the second part 
was first proved by H. Cartan [4], [5] and Carathéodory [3] for bounded 
domains. The generalization to hyperbolic manifolds is due to Kaup [3] and 
Wu [2]. (See also Kobayashi [4, p. 75].) 

THEOREM 9.10. Let Xbe a hyperbolic complex space and 0 a regular point 
of X. Let f eHol (X ,X) and f(0) = 0. Let df0:T0(X)-*T0(X) denote the 
differential of f at 0. Then 

(1) the eigenvalues of dfo have absolute value ^ 1 ; 
(2) if dfo is the identity linear transformation of T0(X), then f is the identity 

transformation of X; 
(3) if |detd/o| = l, then f is biholomorphic. 

A result similar to (3) of Theorem 9.10 is in Pelles [1], where ƒ is assumed 
to be measure-preserving. In the compact case, we can conclude that ƒ is 
biholomorphic without appealing to the distance dx. From formulae (8.6) 
and (8.8) we immediately obtain 

THEOREM 9.11. Let Xbe a compact complex space with Vol(X)=fxMtrx>0 
(resp. \ro\(X)=$x&x>0), the assumption being satisfied if X is measure-
hyperbolic (resp. meromorphically measure-hyperbolic). Then every f e 
Hol(X, X) (resp. f e Mer(X, X)) is either degenerate everywhere or 
biholomorphic (resp. bimeromorphic). 

Let X be compact and ƒ G Hol(X, X). If ƒ is degenerate, f(X) is a subspace 
of lower dimension. By iterating ƒ, we obtain a decreasing sequence of complex 
subspaces: 

X = f(X) 3 f (X) 3 • • • =, f (X) = f+1(X) = • • • 

which stops at fk(X) for some k. Then (Kaup [1]). 

THEOREM 9.12. If X is a compact hyperbolic space and if ƒ GHO1(X, X), 
then there is a positive integer m such that f2m=fm

m 

Let g=fm so that g2=g. Then X is a fibre space over g(X) with projection 
g and a holomorphic section g:g(X)—>X. If X is nonsingular, so is g(X). 
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A similar result is not known for measure-hyperbolic spaces or even for 
spaces of general type. 

10. Extension of holomorphic and meromorphic maps. Let X be a 
complex space and A a closed subset of X. We consider such analytic 
objects as holomorphic and meromorphic maps, complex subspaces, vector 
bundles, or sheaves all defined on X - A and ask if they can be extended to 
X. Siu's recent monograph [1] gives a comprehensive survey of this general 
question. But we are interested here primarily in the problem of extending 
holomorphic or meromorphic maps. 

First we consider the case where A is a complex subspace of X. Let ƒ be a 
holomorphic or meromorphic map from X—A into another complex space 
Y If we impose no conditions on Y, it is, in general, impossible to extend ƒ 
to a map ƒ :X-> Y unless the dimension of A is smaller than the minimum 
fibre dimension of ƒ, i.e., smaller than dim f~\y) for all y G Y with /_1(y)5é 0 
(see Stein [1]). Consider, for instance, X = C " ( n ^ 2 ) , A={0} and 
Y=(Cn-{0})/Z (Hopf manifold), where Z acts on Cn-{0} by (m,z)e 
Zx(C n -{0}) ->2 m zeC n -{0} (see Griffiths [2]). Then the natural projection 
ƒ : Cn-{0}—»(Cn-{0})/Z does not extend to Cn even as a meromorphic map. 

The most basic extension theorem is that of Riemann which may be stated 
as follows: 

THEOREM 10.1. Let X be a normal complex space and A a complex 
subspace of codimension ^ 1 . Let Y be a complex space for which cY is a 
complete distance. Then every holomorphic map f'-X—A—» Y extends to a 
holomorphic map ƒ :X—> Y. 

This theorem says, in particular, that a bounded holomorphic function on 
X - A extends to a bounded holomorphic function on X, and really nothing 
more. Another important extension theorem is that of Hartogs. We state it 
in the form generalized by Andreotti and Stoll [1]. 

THEOREM 10.2. Let X be a normal complex space and A a subset of 
topological codimension ^ 3 contained in a complex subspace of codimension 
^ 1 . Let Y be a complex space. Then every holomorphic map f'.X-A-^Y 
extends to a holomorphic map f: X—» Y if one of the following two conditions 
is satisfied: 

(1) Y is a Stein space; 
(2) X is a nonsingular complex manifold and Y has a Stein covering space 

Y. 

When Y=C, this is Hartogs' theorem. (It is usually assumed that A is a 
complex subspace of codimension ^2.) 

In contrast to holomorphic maps into a Hopf manifold, we have the 
following well-known theorem for maps into projective algebraic varieties. 

THEOREM 10.3. Let X be a complex space and A a complex subspace of 
codimension ^ 2 . Let Y be a projective algebraic variety. Then every 
meromorphic map f:X-A^Y extends to a meromorphic map f :X—>Y. 
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It is not known if Theorem 10.3 still holds when Y is a compact Kâhler 
manifold. For partial results in this direction, see Griffiths [2] and Shiffman 

It is noteworthy that the extension theorems proved in §3, Theorem 3.6 
through Corollary 3.10, are all valid for a complex subspace A of codimen­
sion ^ 1 except Theorem 3.11 for which an assumption similar to that of 
Theorem 10.2 has to be made. In all these theorems (Theorems 3.6 through 
3.11), Y is a hyperbolic complex space. We have no extension theorems 
when Y is merely (compact) measure-hyperbolic. But in an important 
special case, we have (Kobayashi and Ochiai [3], [4]) 

THEOREM 10.4. Let X be a complex space and A a complex subspace of 
codimension ^ 1 . Let Y be an n-dimensional compact complex space of 
general type. Then every meromorphic map f :X-A->Y of maximal rank n 
extends to a meromorphic map ƒ :X—> Y. 

In dimension n ^ 2 , every function holomorphic in a shell X-A={ze 
Cn ; 0<r<| |z | |<R} extends to a holomorphic function in the ball X = { z e 
Cn;\\z\\< R} (Hartogs' phenomenon). Now we want to state theorems 
generalizing this phenomenon. 

Let D be the unit disk in C and Ar={z e C ; r < | z | < l } . We say that a 
complex space X is disk-convex if every sequence { /„}EHO1(D, X) con­
verges in Hol(D, X) whenever the sequence {/n|Ar}eHol(Ar, X) converges 
in Hol(Ar, X) for some r < l . Shiffman [2] proved 

THEOREM 10.5. Let X be a domain in a Stein manifold M and E(X) its 
envelope of holomorphy. Let Y be a disk-convex complex space. Then every 
holomorphic map ƒ :X—» Y extends to a holomorphic map ƒ :E(X)-» Y. 

COROLLARY 10.6. Let X and E(X) be as above. Then every holomorphic 
map ƒ : X—> Y extends to a holomorphic map f : E(X)-> Y if Y satisfies one of 
the following two conditions: 

(1) Y admits a hermitian metric of nonpositive holomorphic sectional 
curvature (or more generally, a differential metric of nonpositive curvature); 

(2) Y is complete hyperbolic (or more generally, taut). 

The fact that Y is disk-convex in case (1) was proved by Shiffman in the 
same paper. For a direct but similar proof of (1) of Corollary 10.6, see also 
Griffiths [2]. The fact that Y is disk-convex in case (2) is proved in 
Kobayashi [4, p. 77]. A direct proof of (2) of Corollary 10.6 is in Fujimoto 
[2]. See also Kwack [3]. 

11. Defect relations. We shall briefly discuss the higher dimensional 
Nevanlinna theory. The main objective of the theory is to describe quantita­
tively the image of a holomorphic map ƒ :Cm—> Y relative to the divisors of 
Y. At present, theory is in satisfactory form only in two cases: (i) m = l and 
Y = Pn(C) (holomorphic curves in Pn(C)), (ii) m = n (the equidimensional 
case), although essential concepts of the theory are largely valid in the 
general case. This corresponds to the situation in the preceding sections 
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where we could develop the theory of intrinsic pseudo-distances and 
pseudo-volume forms but could not obtain any significant result for inter­
mediate dimensional intrinsic measures. 

Let Y be an n-dimensional projective algebraic manifold, and S = 
Si+ • • • +Sk an effective divisor. Let z\ • • • , zm be the natural coordi­
nate system in Cm, and let Br denote the closed ball of radius r, Br={ze 
Cm ; | |z | |<r}, where | | z | |2=|zT+ * * * +|zm |2. D ^nne a (l,l)-form <fr on Cm by 

^ = (V(-i)/27r)adiog||z||2. 
Given a nondegenerate holomorphic map f:Cm-+Y, we set 

(11.1) n ( S , p ) = f i *m~\ 
jf-1snBp 

(11.2) N(S, r) = n(S, p)p~l dp (counting function). 

Let L be a line bundle over Y and let w be a closed real (1,1)-form 
representing the Chern class of L. Set 

(11.3) t(L,p)=\ T C O A I T - 1 , 

(11.4) T(L, r) = J t(L, p)p~' dp (order function). 

Now we consider the case of a holomorphic curve in Pn(C). We let 
Y=Pn(C), S = a hyperplane H in Pn(C), and L = the line bundle defined by 
the divisor H. Choosing the natural hermitian metric in L, we may assume 
that co is the Kâhler form associated to the Fubini-Study metric of Pn(C) 
normalized in such a way that Jpn(c)Con = l . We assume that f:C-*Pn(C) is 
nondegenerate in the sense that f(C) is not contained in any hyperplane of 
Pn(C). Now, Br is the closed disk of radius r in C. Definition (11.1) means 
that f(Bp) meets the hyperplane H exactly n(H, p) times, counted with 
multiplicity. Since the line bundle L and the Fubini-Study metric of Pn(C) 
are independent of the choice of a hyperplane H, we denote t(L, p) simply 
by t(p). Then t(p) = $BP f*co is the area of f(Bp) measured by the Fubini-
Study metric of Pn(C). Similarly, we write T(r) for T(L, r). The counting 
function N(H, r) measures how frequently f(Br) meets H. The justification 
for using N(H, r) rather than n(H, r) to measure this frequency comes from 
the equality 

(11.5) T(r)=ÏN(H,r)dH, 

where the right-hand side is the integral of N(H, r) over the dual 
projective space with respect to the natural measure dH. The image f(Br) 
may meet some hyperplanes more often than others, and (11.5) expresses 
the fact that T(r) is the average frequency. The Nevanlinna inequality (a 
consequence of the so-called First Main Theorem) states: 

(11.6) N(H,r)<T(r) + Q 
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where C is a constant depending on H but independent of r. This inequality 
implies that the defect 8(H) defined by 

(11.7) S(H)= l - l imsup(N(H, r)/T(r)) 

lies between 0 and 1. The equality 8(H) = 0 means that H meets f(C) as 
often as any other hyperplane does. If 8(H)>0, then H meets f(C) less 
often than the average. In particular, if H does not meet f(C) at all, we have 
8(H)=1 . The most important result in Nevanlinna theory is the following 
defect relation, proved by Nevanlinna for n = l and by Ahlfors for an 
arbitrary n. 

THEOREM 11.1 Let Hi, • • •, Hk be hyperplanes in general position in 
Pn(C). Let f:C—>Pn(C) be a nondegenerate holomorphic curve. Then 
I , 8 ( H i ) ^ n + l . 

For the proof of Theorem 11.1 and the detail of the foregoing discussion, 
see H. Weyl and J. Weyl [1] and Wu [3]. The most satisfactory proof from 
the differential geometric viewpoint is in Chern [4], where the defect 
relation is proved for n = 2 but everything else is done for an arbitrary n, and 
in Cowen and Griffiths [1]. In the latter, one finds that metrics of negative 
curvature play an essential role as in the theory of intrinsic pseudo-
distances. Chern's proof of the defect relation was generalized for an 
arbitrary n by H. Yamaguchi in 1972 (unpublished). 

Consequences of Theorem 11.1 will be discussed in the next section in 
relation to the principle of the little Picard theorem established earlier (see 
Theorem 3.5). 

The defect relation in the equidimensional case was first obtained by 
Carlson and Griffiths [1]. We present it in the form generalized by Sakai [2], 
[3]. Let Y be an n-dimensional projective algebraic manifold and f:Cn->Y 
be a nondegenerate holomorphic map. Given a divisor S of Y, the counting 
function N(S,r) is defined by (11.2). Given a line bundle L over Y, the 
order function T(L, r) is defined by (11.4). The line bundle defined by S is 
denoted by [S]. Then the defect is defined by 

(11.8) 8(S) = l - l imsup(N(S, r)/T([Sl r)). 

We introduce a few more quantities: 

(U.9) n^^l r~\ 
J(Jf)nBp 

where (Jf) denotes the divisor of Cn given as the zero set of the Jacobian Jf 
of ƒ. We set 

(11.10) N1(r)^\rn1(p)p-1dp, 
Jo 

(11.11) 7i([S]) = limmf(Ni(r)/T([S], r)). 

Then 
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THEOREM 11.2. Let Si, • • •, Sk be nonsingular divisors on a projective 
algebraic manifold Y such that S = Si+ • • • +Sk has only normal crossings. Let 
K denote the canonical line bundle of Y. Assume that there exist integers 
q0, ••• jqk such that the line bundle L defined by L-Kq°[Si]qi • • • [Sk]qk 

satisfies 

(11.12) l i m s u p m " n d i m r ( L m ) > 0 . 
m-*<» 

Let ƒ :Cn—» Y be a nondegenerate holomorphic map (n = dim Y). Then 

8(S) + 7i([S])Slimsup(-T(K, r)/T([S], r)). 

This is only one of the results in Sakai [2], [3]. We recall that (11.12) is 
similar to (7.5) used in defining the concept of a manifold of general type. In 
terms of the concept of L-dimension of Iitaka [1], (11.12) means that the 
L-dimension of Y is equal to the complex dimension n of Y. If L is ample, 
(11.12) is automatically satisfied. Carlson and Griffiths [1] obtained the 
result above in the case where [ S i ] - • • • =[Sk] and the line bundle L = K[Si] 
is ample. We mention two consequences of Theorem 11.2 (see Sakai [2]). 

COROLLARY 11.3. Let Y~Pn(C) and let Si, • • •, Sk be a nonsingular 
hypersurface of degree di, • • •, dk such that S ~ S i + - - - + S k has normal 
crossings. If f:Cn-*Pn(C) is a nondegenerate holomorphic map, then 
I i k - i d i - 8 ( & ) S n + l . 

This follows from the fact that if H is any hyperplane of Pn(C), then 
K = [H]- (n+1) and [Si]=[H]d< so that -T(K,r) /T([S] , r) = (n+l)/d, where 
d=Zîc=i^i- The following corollary can be derived from the special case 
considered by Carlson and Griffiths [1]. 

COROLLARY 11.4. Let Hi, • • • , Hk be hyperplanes in general position in 
Pn(C). If f:Cn-+Pn(C) is a nondegenerate holomorphic map, then 
I f - i 8 ( H i ) ^ n + l . 

The proof of Theorem 11.2 involves volume forms with negative Ricci 
form, and it is simpler than the proof of Theorem 11.1 which in essence has 
to do with metrics of negative curvature. 

For Nevanlinna theory for holomorphic maps of an affine algebraic 
manifold into a projective algebraic manifold of the same dimension, see 
Griffiths and King [1]. We have seen that the theory of intrinsic measures is 
applicable not only to holomorphic maps but also to meromorphic maps. 
Similarly, the equidimensional Nevanlinna theory generalizes to meromor­
phic maps (see Shiftman [3]). 

12. Examples and applications. 
EXAMPLE 1. Since d c - 0 , we have do = 0 if G is a complex Lie group. If 

X is a complex space with a holomorphic map /:G—>X such that f(G) is 
dense in X, then dx-0. In particular, if a complex Lie group G acts on X 
with a dense orbit, then dx = 0. If X is a compact homogeneous complex 
manifold, e.g., Pn(C), a hyperquadric, or a complex torus, then dx = 0. If two 
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complex spaces X and Y are bimeromorphic to each other, then dx = 0 if 
and only if dY = 0; this is because every meromorphic map f : D - » X is 
holomorphic. Hence, dx = 0 if X is a rational variety. If /:Y—>X is a 
surjective meromorphic map and dY = 0, then dx = 0. Hence, dx = 0 if X is 
unirational (i.e., if there is a surjective meromorphic map Pn(C)—>X with 
n = dim X). If X is a generalized Kummer variety (i.e., if there is a surjective 
meromorphic map from a complex torus T with dim T^dim X), then dx = 0. 
Since Cn-{0} has the trivial intrinsic pseudo-distance, for a Hopf surface X 
we have dx = 0. 

EXAMPLE 2. If X is a complex space on which a complex Lie group acts, 
then ^ x = 0 (see the end of §5). If Y is bimeromorphic to such a space X, 
then ^ Y = 0 . If X is a compact homogeneous complex manifold, then ^Px = 0. 
If X is a rational or unirational variety or a generalized Kummer variety, 
then ^ x = 0 as above. If X is a Hopf surface, then ^ x = 0. If X=CxDn~\ 
then ^ x = 0. Hence, if X is an elliptic surface, then ^ x = 0. If 
X=Pi(C)xDn~\ then ^ x = 0. Hence, if X is a ruled surface, then ^>x = 0. 

EXAMPLE 3. Let X be a complete Kâhler manifold with positive 
semidefinite Ricci tensor. Then cx = 0 (Yau [3]). (This is of interest only 
when the Ricci tensor is not strictly positive and bounded away from zero 
because cx = 0 trivially if X is compact.) The next two examples will justify 
the term "hyperbolic space." 

EXAMPLE 4. Let X be the complex line C minus a discrete set of points. 
By Theorem 2.4 and Example 1, cx = 0. The situation is quite different for 
dx. If we delete only one point, say the origin, then we still have dc*=0 by 
Example 1 since C* is a complex Lie group. But as soon as we delete two 
points, say 0 and 1, the resulting space X becomes complete hyperbolic, and 
by Theorem 3.5 every holomorphic map ƒ : C—»C-{0,1} is constant (the 
little Picard theorem). The fact that C-{0, 1} is complete hyperbolic can be 
seen from Theorem 3.3 and from the fact that the upperhalf-plane (which is 
biholomorphic to the disk D) is the universal covering space of C-{0, 1}, the 
projection being given by the modular function À. This is the way the Picard 
theorem was originally proved. This proof shows also that the intrinsic 
distance dx for X = C—{0, 1} comes from a metric of constant negative 
curvature - 1 . But to see that C-{0, 1} is hyperbolic, it suffices to construct a 
hermitian metric of negatively bounded curvature (Theorem 6.4). Such a 
metric was explicitly constructed in Robinson [1] (cf. the construction in 
Grauert and Reckziegel [1], reproduced in Kobayashi [4]). This is a differen­
tial geometric "elementary" proof of the little Picard theorem. We do not 
give here the explicit expression of such a metric since we shall give a more 
general result in another example. If we consider C-{0, 1} as the comple­
ment of three points, say oo, 0, 1, in the Riemann sphere Pi(C), then 
C-{0, 1} is hyperbolically imbedded in Pi(C) in the sense of §3. In this 
particular case, condition (b) for the hyperbolic imbedding is trivially 
satisfied although in many cases this condition is difficult to verify. Hence, 
from Theorem 3.6 we obtain the classical great Picard theorem: every 
holomorphic map ƒ :D*—»C-{0,1} extends to a holomorphic map ƒ :D-> 
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Pi(C). The implication (i)-^(ii) of Theorem 8.4 applied to the hyperbolically 
imbedded C-{0, 1} in Pi(C) yields the classical theorem of Montel. It should 
be noted that the complete hyperbolicity of C-{0, 1} follows from the fact 
that C-{0, 1} is hyperbolically imbedded (see Theorem 3.13) although it 
may be also derived from the fact that the hermitian metric of negatively 
bounded curvature constructed by Grauert-Reckziegel is a complete metric 
(see Theorem 6.4). 

EXAMPLE 5. Let X be a compact Riemann surface of genus g. Since X is 
compact, Cx = 0 irrespective of the genus g. If g = 0 or 1, then dx = 0 by 
Example 1. If g ̂ 2 , then the disk D is the universal covering space of X, 
and X is complete hyperbolic. The intrinsic distance dx comes from a metric 
of constant negative curvature - 1 . If we are only interested in knowing that 
X is complete hyperbolic when g ^ 2 , we have only to construct a hermitian 
metric with negative curvature explicitly using linearly independent 
holomorphic 1-forms coi, • • • , cog as in Grauert and Reckziegel [1] and then 
apply Theorem 6.4 (see also Kobayashi [4, p. 12]). The existence of such a 
hermitian metric may be also derived from the fact that the canonical line 
bundle of X is ample if g ^ 2 and from the implication (1)—»(2) of Theorem 
7.1. 

We shall now consider examples of domains in Cn. 
EXAMPLE 6. Let ft be an open cone in Rn and let Tn={z = x + iy eCn;y e 

ft} be the tube domain defined by ft. Then T n is hyperbolic if and only if the 
cone ft contains no whole straight lines. (Such a tube domain is called a 
Siegel domain of the first kind in the terminology of Pyatetzki-Sapiro [1].) It 
is complete hyperbolic if and only if the cone ft (without straight lines) is 
convex. It is indeed finitely compact (and hence Cauchy-complete) with 
respect to its Carathéodory distance cTn if ft is convex. The same result holds 
even for any Siegel domain of the second kind; see Sibony [1]. 

EXAMPLE 7. Let X be a bounded symmetric domain in Cn. Then cx = dx 

(see Kobayashi [4]). From the homogeneity we can conclude that X is 
complete hyperbolic. This is also a special case of the example above, Siegel 
domain of the second kind. 

The following interesting example is due to Sibony [1], [2]. 
EXAMPLE 8. Let {ük} be a discrete sequence of points in the unit disk D 

and {Ak} a sequence of positive real numbers with XAk<°°. We define 
functions cp and $ on D by 

<p(z) = Ç x k - l o g ^ ^ , <D(z) = exp(cp(z)) 

and a domain X in D x C by 

X = {(z, w) € D x C; |w| <exp(-*(z))} . 

The function |w|exp(<&) is plurisubharmonic and X is a pseudo-convex 
domain contained in the bidisk D2 . In particular, X is a domain of 
holomorphy. Assume further that the sequence {au} was chosen in such a 
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way that every point of the boundary of D is a nontangential limit of a 
suitable subsequence of {ük}. Then X has the following properties: 

(1) X is a Runge domain, i.e., every holomorphic function on X can be 
uniformly approximated on an arbitrary compact set in X by polynomials of 
(z, w); 

(2) X is convex with respect to the family of bounded holomorphic 
functions on X; 

(3) Every bounded holomorphic function on X extends to a bounded 
holomorphic function on D 2 ; 

(4) X is not Cauchy-complete with respect to cx. 
This example shows that the converse of (e) of Theorem 4.1 is not true in 
general. It shows also that an H°°-convex domain need not be a domain of 
bounded holomorphy. On the other hand, we have another example due to 
Sibony [1], [2]: 

EXAMPLE 9. Let X={(z, w ) e C 2 ; |w |< |z |< l} . Then X is a domain of 
bounded holomorphy. Let X'={(z, u)eC2; 0 < | z | < l , | u |< l} . The map 
(z, w)—»(z, uz) gives a biholomorphic correspondence between X' and X. It 
follows that X is not H°°-convex. Clearly, X is complete hyperbolic but is 
not Cauchy-complete with respect to cx. 

The following related example is due to Ahern and Schneider [1]: 
EXAMPLE 10. Let {ak} be a sequence of positive numbers converging 

monotonically to 0. Let {ck} be another sequence of positive numbers such 
that the closed disks of radius ck about ak are mutually disjoint and such 
that X Ck(ak-Ck)_1<i Let X be the Riemann sphere with 0 and the union of 
these closed disks removed. This is a one-dimensional example of an H°°-
convex domain which is not finitely compact with respect to the 
Carathéodory distance. 

EXAMPLE 11. An often-asked question is whether there exists a hyper­
bolic manifold X which cannot be written as the quotient of a bounded 
domain by a properly discontinuous group of automorphisms. The following 
example by Kaup is such a noncompact hyperbolic manifold. Consider 
C2-{0} as a principal bundle over Pi(C) with group C*. Let L be the 
associated line bundle over Pi(C); it may be also obtained from C2 by 
blowing up the origin. (The origin blows up to the zero section of L.) Let B 
be the set of elements of L of length less than 1 with respect to the natural 
hermitian fibre metric; it may be obtained from the unit ball in C2 by 
blowing up the origin. It is a unit disk bundle over Pi(C). Choose any three 
points in Pi(C) and remove the closed disk of radius \ from the fibre over 
each of these three points. Then the resulting space X is a simply connected 
complete hyperbolic manifold which is not C-hyperbolic in the sense of §3. 

The following example is due to Green [2]. 
EXAMPLE 12. Let C be a nonsingular algebraic curve in Pi(C) and let C* 

be the dual curve in the dual projective plane Pf(C); C* consists of lines in 
Pi(C) which are tangent to C. We define a branched covering space X of 
P*(C) with branch locus C* as follows. Let C* be given by the vanishing of 
a homogeneous polynomial f(wo, wi, W2) in P*(C). Then define Xc=P3(C) by 
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the vanishing of the polynomial W3-/(wo, wi, w2), where d is the degree of ƒ. 
(It is known that d = k ( k - l ) if the degree of C is k.) Then X is simply 
connected by a theorem of Lefschetz. Green shows that if k=^4, then X is 
hyperbolic. But X has singularities. 

In Theorem 7.1 we saw that a compact complex manifold with ample 
canonical line bundle admits a volume form with negatively bounded Ricci 
form and hence is measure-hyperbolic. We shall give concrete examples of 
such manifolds. 

EXAMPLE 13. Let X be a nonsingular hypersurface in Pn+i(C) of degree 
d. If we denote the positive generator of H2(P„+i(C); Z)-Z by h, then the 
first Chern class Ci(X) of X is given by 

ci(X) = (n + 2 -d )h |x , 

(see Hirzebruch [1, Appendix 1]). Hence, if d > n + 2 , then the canonical line 
bundle of X is ample. More generally, if Xi, • • • , Xr are nonsingular 
hypersurfaces of Pn+r(C) intersecting transversally, then X = XiD • • • HXr is 
a nonsingular submanifold of dimension n and is called a complete intersec­
tion submanifold of Pn+r(C). The degree d of X is defined to be the sum of 
the degrees of Xi, • • •, Xr. Then ci(X) = (n + r + l - d ) h | x , where h is the 
positive generator of H2(Pn+r(C); Z) . Hence, if d > n + r + l , then the canoni­
cal line bundle of X is ample. (In fact, it is very ample.) In general, given a 
closed real (l,l)-form 7 on X representing o(X) , we can find a volume 
form Vx such that 7 = 477 'Ric vx. But it is not known if such a volume 
form comes from a Kàhler metric of X (Calabi's problem). 

EXAMPLE 14. If z°, z1, • • • , zn+1 is a homogeneous coordinate system for 
Pn+i(C), then the hypersurface defined by £r=o (z l)d = 0 is called the Fermât 
variety of degree d and will be denoted by F(d). By the assertion made in 
Example 13, F(d) has (very) ample canonical line bundle if d > n + 2 . If n ^ 2 , 
then the Fermât variety contains a rational curve 

z°=u, z1 = r\'U, z2=t>, z3 = j]'V (T) = d t h r o o t o f - 1 ) 
z 4 = . . . = z n + i = 0 ? 

and hence is not hyperbolic. For n = l, F(d) is hyperbolic if d > 3 . 
EXAMPLE 15. Let Y be the complement of n+2 hyperplanes in general 

position in Pn(C). We shall show that Y admits a volume form vY with 
negatively bounded Ricci form. We identify Pn(C) with the Fermât variety 
F( l ) of degree 1 in P„+i(C) defined in Example 14. Thus Pn(C) is the 
hyperplane in P„+i(C) defined by z°+zl+ • • -+zn+1 = 0. Let Hi be the 
hyperplane in Pn+i(C) defined by zl = 0. Then without loss of generality we 
may assume that Y=F( l ) -U?=o H . The mapping fd :Pn+i(C)->Pn+i(C) 
defined by 

/d(z° ,z 1 , - - - ,z w + 1 ) = ((z°)d ,(z1)d ,--- ,(zn + 1)d) 

induces a covering projection F(d)—\J Hi -»F(1)- (J Hi = Y. Now let 
d > n + 2 . Set Y=F(d)—U Hi. By Example 14, the intrinsic pseudo-volume 
form 4?F(d) is positive, and F(d) is (meromorphically) measure-hyperbolic. 
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Hence ^ Y > 0 and Y is also (meromorphically) measure-hyperbolic. Since 
F(d) is a covering space of F(l) branched over F ( l ) n ( U Hi), it follows that 
Y is an unbranched covering space of Y By (7) of Theorem 5.1, ^ Y > 0 and 
Y is (meromorphically) measure-hyperbolic. This is probably the simplest 
way to see that Y is (meromorphically) measure-hyperbolic. By Theorem 
5.6, every meromorphic map f:Cn-+Y is everywhere degenerate. By 
setting n = l, we see that Pi(C) with three points removed is hyperbolic and 
obtains the classical little Picard theorem (see Example 4). If we want to 
have a smooth volume form uY with negatively bounded Ricci form, we have 
to construct a volume form vy on Y which is invariant under the covering 
transformations and has negatively bounded Ricci form. Let £ be the 
primitive dth root of 1 and let G be the finite group of transformations of 
F(d) consisting of transformations 

( 2 0 , . - - , Z n + 1 ) - > a k o Z ° , - - - , £ k - Z n + 1 ) . 

Take any volume form VFW on F(d), and let w be a G-invariant closed 
(l,l)-form cohomologous to RicuF(d>; to obtain such a form co, restrict the 
Kàhler form of Pn+i(C) to F(d) and multiply it by a suitable (negative) 
constant. Then there is a volume form ÜFW), unique up to a constant factor, 
such that o> = Ric ÜFW). This form is invariant by G. We have now only to set 
VY = VF(d)\v. We note that the volume of Y measured by vY is finite; in fact, 

lVY=\h\LVF(dh 

We shall now examine the intrinsic pseudo-distance of the same example 
to obtain finer results. 

EXAMPLE 16. As in Example 15, let Y be the complement of n+2 
hyperplanes in general position in Pn(C) = F( l ) . (We use the same notation 
as in Example 15.) For each subset I={ji, • • • , jV} of {0, 1, • • • , n + 1} consist­
ing of at least two but no more than n indices, we define a hyperplane Ai of 
Pn(C) by z J l+ • • • +zJk = 0, which is called the diagonal hyperplane corres­
ponding to the index set I. We set A= I J I A I . Then Y is complete hyperbolic 
modulo A. This is a reformulation of the result of Bloch [1]. A more precise 
result follows from the main theorem of Cartan [1]. Namely, Y is tautly (and 
hence hyperbolically) imbedded in Pn(C) modulo A. (For these reformula­
tions of the results of Bloch and Cartan, see Kiernan and Kobayashi [2].) 
Applying Theorem 3.5 to this example, we can conclude that every noncon-
stant holomorphic map ƒ : Cm —> Y sends Cm into one of its diagonal hyper­
planes. This is the classical result of E. Borel [1] and generalizes the little 
Picard theorem. For proofs of the theorem of Borel, see also Nevanlinna [2], 
Fujimoto [1], Green [1]. Historically, Borel's theorem preceded and in fact 
motivated the work of Bloch and Cartan. 

EXAMPLE 17. Let Y be the complement of n+k + 1 hyperplanes H0, 
Hi, • • • , Hn+k in general position in Pn(C). For each subset I of 
{0, 1, • • • , n+k} consisting of at least two but no more than n + k - 1 indices, 
let V be its complementary index set and let Ai (=Ai) be the (n-k)-
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dimensional linear subspace of Pn(C) spanned by f]ieiHi and fl/ei'H]. We 
set A = UiAf. Then a simple combinatorial argument applied to Example 16 
shows that Y is complete hyperbolic modulo A and is hyperbolically 
imbedded in Pn(C) modulo A. It follows that every nonconstant holomor-
phic map f:Cm->Y sends Cm into one of the Ai's. If k = n, each Ai reduces 
to a point and it follows that the complement Y of 2 n + l hyperplanes Ho, 
Hi, • • • , H2n in general position in Pn(C) is complete hyperbolic and is 
hyperbolically imbedded in Pn(C); see Dufresnoy [1], Fujimoto [1], [3], 
Kiernan and Kobayashi [2]. But a more careful combinatorial argument 
applied to the theorem of E. Borel yields the following theorem of Fujimoto 
[1] and Green [1]. 

THEOREM 12.1 Let Y be the complement of n + k + 1 hyperplanes in gen­
eral position in Pn(C). Then the image of any holomorphic map f:Cm->Y is 
contained in a linear subspace of dimension [ft/(k + l)], the greatest integer 
^n/(k + l) . 

This bound is sharp, see the papers of Fujimoto and Green. Their 
theorem shows that if Y is the complement of n+2 hyperplanes in general 
position in Pn(C), then the image of ƒ : Cm -> Y lies not merely in a diagonal 
hyperplane but in a linear subspace of dimension [n/2]. In connection with 
Example 16, we should note the result of Green [1] that if Y is the 
complement of n+2 distinct hyperplanes in Pn(C) (but not necessarily in 
general position), then the image of f:Cm->Y lies in a hyperplane. 

Although our principle of the great Picard theorem (Theorem 3.6) applies 
only to the case k ^ n in Example 17, Fujimoto [1] and Green [3] obtained 
generalizations of the great Picard theorem to all k ^ l . We quote only the 
result of Fujimoto. For the meromorphic version, see Green [3]. 

THEOREM 12.2. Let X be a complex manifold and A a complex subspace 
whose singularities are normal crossings. Let Y be the complement of n-f-k + 1 
hyperplanes in general position in Pn(C). Let f'.X—A—>Y be holomorphic. 
Then either the image f(X—A) lies in an (n — k)-dimensional linear subspace 
of Pn(C) or f extends to a holomorphic map ƒ :X—>Pn(C). 

There is another form of generalizing the great Picard theorem, which is 
probably more important in applications to algebraic geometry. 

EXAMPLE 18. Let M be a symmetric bounded domain and T an arithmet­
ically defined discontinuous group of automorphisms of M. Let Y = T \ M 
and let Z be the Satake-Baily-Borel compaerification of Y For a technical 
reason, assume that T is acting freely on M. Then Y is hyperbolically 
imbedded in Z (see A. Borel [1], Kobayashi and Ochiai [2] and also 
Kiernan and Kobayashi [3] where the question concerning the Hausdorff 
property of Pyatetzki-Sapiro's compactfication has been resolved). Hence 
we can apply the principle of the great Picard theorem to this example. In 
the special case where M is the upper half-plane in C and T is the principal 
congruence subgroup T2={A €SL(2; Z) ; A = I mod 2} of SL(2; Z), Y=T\M 
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is C-{0, 1} and Pi(C) is the compactification of Y (The covering projection 
M—»C-{0, 1} is the modular function À mentioned in Example 4.) 

In both Theorem 3.6 and Corollary 3.8 which are concerned with 
holomorphic extensions, we have to assume that the domain space X is 
nonsingular as the following simple example shows. Let Y be any compact 
hyperbolic space, e.g., an algebraic curve of genus greater than 1, and let X 
be the cone over Y Let A be the vertex of the cone. Then the natural 
projection 7 r : X - A - * Y does not extend to a holomorphic map of X into 
Y. On the other hand, there is one important case where the holomorphic 
extension Theorem 3.6 holds for a singular X. Let M be a symmetric 
bounded domain and T an arithmetically defined discontinuous group of 
automorphisms of M. Let X be the Satake-Baily-Borel compactification of 
T \M and let A be the boundary of T\M added for the compactification so 
that X = ( r \ M ) U A . (Note that we switched the notation.) Let Y be any 
hyperbolically imbedded complex space in another complex space Z. Then 
(Kiernan and Kobayashi [1]) 

THEOREM 12.3. Every holomorphic map f : X - A - » Y extends to a 
holomorphic map f:X—>Z. 

The following interesting example is due to Kiernan [3], [5]. 
EXAMPLE 19. Let Y=(C-{0 , l } ) x ( C - { - l , 1}). By Example 4 and 

Theorem 3.2, Y is complete hyperbolic. It is also hyperbolically imbedded 
in Pi(C)xP1(C) in a natural manner. We shall now define two imbeddings of 
Y into P2(C). Using a homogeneous coordinate system w, t>, w of P2(C), we 
define two open subsets Y' and Y" of P2{C) by 

Y': uïO,V7*0,uïv,W7é±uev/u; Y": uï 0, v* 0, u* v, mv* ±u2. 

Both of them are biholomorphic to (C-{0, 1 } ) X ( C - { - 1 , 1}) under the maps 
<p : Y ' - ( C - { 0 , l } ) x ( C - { - l , 1}) and i// : Y"-»(C-{0, l } ) x ( C - { - l , 1}) 
defined by 

cp(u, v, w) = (u/u, e~u/vw/u), i//(u, v, w) = (v/u, vw/u2). 

Neither Y' nor Y" is hyperbolically imbedded in P2(C). In fact, the 
holomorphic map f:D*^Y' defined by f(z) = (l , z, 2e1/z) for 0 < | z | < l has 
an essential singularity at z = 0 and does not extend to a holomorphic map 
f:D-^P2(C). On the other hand, the holomorphic map g:D*xD-+Y" 
defined by g(z, t) = ( l , z, t/z) has a pole at (0,0) and does not extend to a 
holomorphic map g :DxD—>P2(C), but it extends to a meromorphic map 
g:DxD-^P2(C). The difference between Y' and Y" lies in the fact that 
since P2(C)-Y" is a complex subspace of P2(C), the map i// extends to a 
bimeromorphic map iff :P2(C)-»Pi(C)xP1(C). 

We shall now combine Theorem 7.1, and Examples 13 and 15 in one 
general construction. 

EXAMPLE 20. Let Z be an n-dimensional projective algebraic manifold 
with canonical line bundle K. Let Si, • • • , Sk be nonsingular divisors on Z 
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such that S = S i+ - - -+Sk has normal crossings. Let [S] denote the line 
bundle over Z defined by the divisor S. If 

lim sup \ dim T((K • [S])m) > 0, 

then Y=Z-S admits a pseudo-volume form VY with negatively bounded 
Ricci form Ric vY. This includes the case where S = 0 and Z is of general 
type (see Theorem 7.1) and the case K[S] is ample. The latter is the case 
considered by Carlson and Griffiths [1] and this generalization is due to 
Sakai [1]. The result of Carlson and Griffiths includes the case Z = Pn(C) and 
deg S ( = £ deg Si)^n+2 such as Example 15. It includes also the case where 
Z is an abelian variety and S is ample. Leaving the detail to the papers of 
Carlson and Griffiths and Sakai, we describe the construction of vY. Let H 
be any ample line bundle. Then there is a positive integer m such that the 
line bundle (K • [S])mH_1 admits a nontrivial section a. We cover Z by 
coordinate neighborhoods {IA} with local coordinate systems zi, • • • , zl. 
Let C7u=0 be the equation defining lAHSi. We represent the section a and 
a hermitian fibre metric h of H by systems of locally defined functions {a\} 
and {h\}, respectively. Since H is ample, we can choose h such that 
(d2 log fu/dzLdzx) is negative-definite. We define a pseudo-volume form o)x 
on UK-S by 

I |2/m n 

^ = ui/"n i prW-1 dz*Adz*. 
rik H i \cn,\\ j= i 

Then {cox} defines a pseudo-volume form globally. Now the desired pseudo-
volume form VY is given by 

where at is the global section of the line bundle [&] defined by {cru}, and ||o-j|| 
denotes its length with respect to any hermitian fibre metric in [&]. Taking 
positive constant c sufficiently small, we obtain u y ^ ( - R i c VY)H. From the 
construction it is clear that VY vanishes exactly at the zeroes of a. In the 
special case where K • [S] is ample, we can take H=K • [S] and a = 1 so that 
VY is positive everywhere. This volume form plays a central role in the 
equidimensional Nevanlinna theory (see Carlson and Griffiths [1]). The 
condition that Si, • • •, Sk are nonsingular and S = Si+ • • • +Sk has normal 
crossings is essential; see Green [4] for counterexamples. 

EXAMPLE 21. Let Gn,k = U(n+k) /U(n)xU(k) be the Grassmannian of 
n-planes in Cn+k and imbed Gn,k in PN(C) (N=(k)-1) by Plücker coordi­
nates. Let H be the hyperplane line bundle of PN(C) restricted to Gn,k. If K 
is the canonical line bundle of Gn,k, then K = H"(n+k). Let Ho, Hi, • • • , Hn+k 
be n+k + 1 hyperplanes in PN(C) and let Y=G n ,k- (U H ) . Assume that 
these hyperplanes are "in general position" in the sense that 
So=H0nGn,k, • • •, Sn+k=Hn+knG„,k are nonsingular and S = S0+ • • • +Sn+k 
has normal crossings, then Y admits a volume form VY with negatively 
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bounded Ricci form and hence is meromorphically measure-hyperbolic; this 
follows immediately from Example 20. If we delete as many as nk+2 
hyperplanes, much stronger results can be obtained (see Green [3]). 

EXAMPLE 22. Let X be a compact complex manifold immersed in a 
complex torus. Then X is a principal torus bundle over a compact Kâhler 
manifold of general type; see Matsushima [1], Yau [1], Ueno [1], [2]. If the 
fibre is nontrivial, then the intrinsic pseudo-volume form ^ x vanishes 
identically by Example 2. If the fibre is trivial, then X is of general type and 
hence meromorphically measure-hyperbolic by Theorem 7.1. We note that 
if one of the Chern numbers, e.g., the Euler number cn(X) or (ci(X))n of X 
(with dim X = n) is nonzero, then the fibre is trivial and X is of general type. 

One of the most interesting applications of the intrinsic distance is the 
following result of Royden [4], [5]. 

EXAMPLE 23. Let Tg denote the Teichmüller space of closed Riemann 
surfaces of genus g ^ 2 (for a survey and references on Teichmüller spaces, 
see Bers [1]). It has a natural complex structure such that the cotangent 
space of Tg at x G Tg is the space Qx of quadratic holomorphic differentials 
on the Riemann surface W represented by x, i.e., Qx=T(Kw), where Kw 

denotes the canonical line bundle of W. A norm G(x, * ) in Qx is defined by 
G(x, T])=JW |T||. Let F(x, *) be the dual norm in the tangent space of Tg at x. 
The important theorem of Royden [4], [5] states that this norm F coincides 
with the intrinsic differential metric FTg of Tg as a complex manifold. As a 
consequence, the intrinsic distance dTg coincides with the so-called 
Teichmüller distance on Tg introduced by Teichmüller before the natural 
complex structure was defined. Royden used his result to study automorph­
isms of Tg. The theorem of Royden has been extended to Teichmüller spaces 
of punctured Riemann surfaces by Royden himself and also by Earle and 
Kra [1]. 

13. Unsolved problems. We list a number of open problems with some 
comments, classified into several groups. A few of them have been already 
mentioned in the main text. 

(A) BASIC PROPERTIES OF INTRINSIC PSEUDO-DISTANCES. Let Ex and F x be 

the infinitesimal forms of cx and dx defined in §2. The indicatrix Tx of Ex at 
x G X is given by 

r x = { t )GT x (X) ;ExW<l} ; 

see Carathéodory [1], [2]. The indicatrix of F x at x can be similarly defined. 
Problem A . l . Study convexity of the indicatrix Tx and differentiability of 

the boundary of I \ . For example, if X is a bounded (pseudo-) convex domain 
with smooth boundary in Cn, is the indicatrix also a convex domain with 
smooth boundary? Indicatrices are more intrinsic than the geometric shape 
of the domain X in Cn. If X and Y are two domains in C" with a 
biholomorphic map f : X - ^ Y , then the indicatrix TX^TX(X) is linearly 
biholomorphic to the indicatrix Tf(X)czTf(X)(Y) under the differential ƒ*. In C2 

with coordinate system z = x+iy, w = u + iu, we consider a real ellipsoid 

X = X(a, b, c, d) = {(z, w); a2*2 + b2y2 + c V + d V < 1}, 
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where a, b, c, d are positive real numbers. Then X(a, a, c, c) is a complex 
ellipsoid and is biholomorphic to the unit ball X( l , 1, 1, 1). What is the 
indicatrix T0 of X(a, b, c, d) at the origin? Is it the same as X(a, b, c, d) 
under the obvious identification? If so, this implies immediately that 
X(a, b, c, d) is biholomorphic to X( l , 1,1,1) only when a = b, c = d, the 
result proved by Webster recently by a completely different method. It is 
therefore of interest to determine the indicatrix for such a special domain as 
ellipsoid. If one wants to apply effectively methods of metric geometry of 
Busemann [1] and Rinow [1] to (X, cx) or (X, dx), it seems to be important 
to find out if the indicatrix is strictly convex. 

Problem A.2. How smooth are Ex and Fx? While Ex is always continu­
ous, Fx need not be so. But Royden [1] has shown that Fx is continuous if 
X is taut (and hence if X is complete hyperbolic). If X is a bounded 
(pseudo-) convex domain in Cn with smooth boundary, are Ex and Fx 

smooth on T(X) outside the zero section? In order for methods of Finsler 
geometry to be applicable to Ex and Fx, these intrinsic differential metrics 
must be at least twice differentiable outside the zero section of T(X). For 
the question of differentiability of Ex , see Reiffen [1]. The question is clearly 
related to Problem A. l . 

Problem A.3. Is log F x plurisubharmonic on T(X)? From the very defin­
ition, log Ex is clearly plurisubharmonic. Geometrically, the question is 
whether Fx has negative (or at least, nonpositive) "holomorphic sectional 
curvature." Masur [1] has shown that the Teichmüller space Tg, g ^ 2 , does 
not have nonpositive "sectional curvature." But its holomorphic sectional 
curvature is probably negative in view of the fact that the Weil-Patterson 
metric has negative holomorphic sectional curvature (see Ahlfors [3]). 

Problem A.4. For a symmetric bounded domain X, we have Cx = dx; see 
Example 7. Is there any other domain for which Cx = dxl For a Siegel 
domain X of the first kind or, more generally, of the second kind, do we have 
cx-dxl For a real ellipsoid X (see Problem A.l) do we have cx = dxC). Earle 
[1] raises the question whether, for the Teichmüller space Tg, cTg coincides 
with dTg. 

Problem A.5. Is cx an inner pseudo-distance? (See §2.)4 

Problem A.6. In connection with Theorem 4.1, we ask the following two 
questions: 

(i) If a bounded domain X is Cauchy-complete with respect to the 
Carathéodory distance cx, is it finitely compact with respect to cx? This is 
related to Problem A.5; if cx is inner, the answer to this question is 
affirmative. 

(ii) If a bounded domain X is a domain of holomorphy, is it complete 
with respect to dx?5 

Problem A.7. Results in §4 suggest that cx and the Bergman metric dsx 

behave in a similar manner. See also Graham [1]. For a bounded domain X, 
4 T. Barth has shown me examples of X for which cx is not inner. 
5 T. Barth called my attention to N. Kerzman's example of a non-taut bounded domain of 

holomorphy (Notices Amer. Math. Soc. 16 (1969), 675-676). 
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is there any relationship between "completeness with respect to dsx" and 
"completeness with respect to cx"? They seem to be more or less 
equivalent. 

Problem A.8. Let X be a compact complex space. According to 
Theorem 8.9, we can define an equivalence relation R in X using the class % 
of all compact hyperbolic spaces so that X/R is compact hyperbolic. Define 
another equivalence relation R' on X by 

x ~ R ' x' if and only if dx(x, x') = 0. 

Clearly, if x and x' are R'-equivalent, they are JR-equivalent, i.e., there is a 
natural projection X/R'^X/R. Is X/R' a complex space in a natural 
manner? Equivalently, if x and x' are R -equivalent, are they R '-equivalent? 
To understand the R'-equivalence relation, it is natural to examine the sets 
Z(x )={x ' eX; dx(x, x') = 0}. Then each Z(x) is connected. Let e be a 
positive number and Ue the e-neighborhood of Z(x) defined by Ue={x'e 
X; dx(x, x ')<e}. In spite of the fact that due^dx on Ue, we still have 
Z(x)={x'e Ue; due(x, x') = 0}, which shows that Z(x) can be determined 
"locally" in a sense. The infinitesimal object corresponding to Z(x) is given 
by T°x={ve TX(X); Fx(v) = 0}. We can ask if Z(x) is a complex space with tan­
gent space Tx at x. Perhaps, one should examine Fermât varieties (see Example 
14) with respect to these questions. A more modest question is the follow­
ing: If dx is not identically zero, does X/R consist of more than one point? 
Let X be a fibre space over B with fibre F such that dB = 0 and dF = 0. It is 
easy to see that X/R is trivial (i.e., reduces to a single point), but it is not 
clear if dx = 0. 

(B) BASIC PROPERTIES OF INTRINSIC PSEUDO-VOLUME FORMS. 

Problem B. l . If we express the intrinsic pseudo-volume forms <E>X, ^ x 
and ^ x introduced in §5 as 

d>x = EII (V-1 dz] A dz*), Wx = FII(V-1 dz] A dzj), 

Wx = FIl(y/~ldziAdzi), 

in terms of a local coordinate system z1, • • • , zn of X, we can ask questions 
similar to those of Problems A.2 and A.3. How smooth are the functions E, 
F and F? (E is always continuous while F and F are upper semicontinuous.) 
Are log F and log F plurisubharmonic? (log E is plurisubharmonic.) 

Problem B.2. If X and Y are two complex manifolds, then 

<Ê>XXY^<Ï>XA<Ï>Y, f x x Y ^ f x A ^ Y , ^ X x Y ^ f x A ^ y , 

(where the projections of X x Y to X and Y are omitted to simplify the 
notation). Do we have the equality? For the Bergman kernel form, we have 
B X X Y = B X A B Y (Bremermann [1], Kobayashi [6]). 

Problem B.3. Do we have <J>x^Bx^^x in general or for a certain class 
of complex manifolds X? (Of course, we may have to multiply B x by a 
universal constant which depends only on the dimension of X.) When X' is a 
subdomain of X, we have BX^BX on X'. So this is not an unreasonable 
question. For a bounded homogeneous domain X, we have <5>x = Bx = xïrx 
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(with the reservation that Bx may have to be multiplied by a constant). For 
Siegel domains of the first or second kind and for real ellipsoid (see Problem 
A.l) , what relations do we find for <I>X, Bx and M>Y? 

Problem B.4. In view of Theorems 2.4 and 5.2 we ask: If X is a ball in 
Cn with center at 0, does ^ x - w coincide with ^ x on X-{0}? 

Problem B.5. Blow up a point of the polydisk D n and denote the 
resulting space by X. Then we should have an example of space for which 
^ x differs from ^ x . But we can still ask if a (compact) measure-hyperbolic 
space is necessarily meromorphically measure-hyperbolic. 

Problem B.6. If ^Px vanishes on a nonempty open subset of X, does it 
vanish identically? 

(C) DIFFERENTIAL GEOMETRIC QUESTIONS. 

Problem C.l. According to Yau [3], if X is a complete Kâhler manifold 
with Ricci tensor ^ 0 , then cx = 0 and O x = 0 (Example 3). Do we have dx=0 
and/or ^ x = 0. (Assume, if necessary, that X is compact or Ricci tensor 0.) 

Problem C.2. We do not know if a hyperbolic manifold admits a hermi-
tian metric with negatively bounded holomorphic sectional curvature. Brody 
and Green have shown recently that hypersurfaces of large degree in 
Pn+i(C) obtained by perturbing a Fermât variety are hyperbolic. One should 
find out if these hyperbolic manifolds admit hermitian metrics with nega­
tively bounded holomorphic sectional curvature. 

Problem C.3. Let X be a covering space of a complex manifold X. In 
view of Theorem 3.3, we ask the following question. Does X admit a 
hermitian metric with negatively bounded holomorphic sectional curvature if 
X admits such a metric? According to Wu [1], the answer is affirmative if X 
is a finitely sheeted covering space of X. We can ask a similar question about 
volume forms with negatively bounded Ricci form. 

Problem C.4. Let X be a hermitian manifold with negatively bounded 
holomorphic sectional curvature. Does X admit a volume form with nega­
tively bounded Ricci form? (The converse is, of course, not true; consider, 
for example, a Fermât variety of large degree.) 

The following question is not directly related to the main text of this 
paper but is of geometric interest. 

Problem C.5. By the famous theorem of Remmert, every Stein manifold 
X can be imbedded into some CN as a closed complex submanifold. The 
natural flat metric of CN induces on X a complete Kâhler metric with 
nonpositive holomorphic bisectional curvature. If a simply connected com­
plex manifold X admits a complete Kâhler metric with nonpositive 
holomorphic bisectional curvature, is it a Stein manifold? 

Problem C.6. Let X be a compact complex manifold admitting a volume 
form vx with Ric u x < 0 (or >0). Does X admit a Kâhler metric with negative 
(or positive) Ricci tensor? (This is a special case of the Calabi conjecture 
[1].) Even for hypersurfaces in Pn+i(C) this seems to be unknown. 

(D) HOLOMORPHIC AND MEROMORPHIC MAPS. 

Problem D . l . In connection with Theorem 8.6, we ask the following 
three questions: 
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(i) Is every taut complex space complete hyperbolic?6 

(ii) If Y is hyperbolically imbedded in Z modulo A, is it tautly imbedded 
in Z modulo A? 

(iii) Is there any implication between "taut mod A" and "complete hyper­
bolic mod A"? (See the footnote for (i).) 

In (ii) and (iii) we might as well assume that A is a complex subspace of Z 
since that is the only interesting case. 

Problem D.2. Generalize Theorems 8.10 and 8.11 from C-hyperbolic 
spaces to hyperbolic spaces. 

The following problem was posed by Lang [2] (see Theorems 8.12 and 
8.13). 

Problem D.3. Let X be a compact complex space and Y a compact 
hyperbolic space. Prove that there are only finitely many surjective 
holomorphic maps of X onto Y. (This will imply also that there are only 
finitely many surjective meromorphic maps since Y is compact hyperbolic.) 
A related question is whether Theorem 8.13 extends to (meromorphically) 
measure-hyperbolic spaces. It is also an important problem to show that 
there is an upper bound on the number of surjective morphisms which 
depends only on X as in Theorem 8.12. 

Problem D.4. In Example 14 we stated that the complement Y of n+2 
hyperplanes in general position in Pn(C) is tautly imbedded in Pn(C) modulo 
the diagonal hyperplanes and that this is a consequence of the main theorem 
of H. Cartan [1]. The result of Cartan is a little too long to be quoted here 
but it seems to imply much more than we have concluded. So the problem is 
to find a geometric statement which reflects the full strength of Cartan's 
theorem (cf. Kiernan and Kobayashi [2]). Since the proof of Cartan's 
theorem is long and difficult, it is desirable to find a simpler, geometric proof 
estimating the intrinsic pseudo-distance dy. Cowen [2] has given such an 
estimate for the complement of 2n+1 hyperplanes in general position. 

Problem D.5. Let Y be hyperbolically imbedded in Z modulo A. The 
principle of the great Picard theorem (Theorem 3.6) has been so far proved 
only when A is empty. Extend this theorem to the case A is nonempty or at 
least A is a complex subspace so that theorems such as Theorem 12.2 of 
Fujimoto and Green can be derived from the general principle. 

Problem D.6. Extend Theorem 10.4 to the case where Y is a compact 
(meromorphically) measure-hyperbolic space. Find also a concept of com­
plex space Y measure-hyperbolically imbedded in Z such that every 
equidimensional nondegenerate holomorphic (or meromorphic) map 
f:X-A->Y extends to ƒ : X - » Z . The concept should include the situation 
where Y is the complement of n-f2 hyperplanes in general position in 
Z = Pn(C). 

Problem D.7. "Let Y be a projective algebraic manifold whose irregu­
larity (=dim H 0 1 (Y; C)) is greater than the dimension of Y. Then every 
holomorphic map ƒ : C—» Y has its image in a proper closed subvariety of Y." 

6 No, for some reducible spaces according to T. Barth. 
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This assertion was made by Bloch [2] without a complete proof. Recently, 
Ochiai [2] verified Bloch's assertion in many important cases. But the 
statement in its full generality still remains a conjecture. Let A be the 
Albanese variety of Y with canonical map j : Y—»A. If j ° / :C-»A has its 
image j(f(C)) in a proper abelian subvariety, then ƒ(€) lies in a proper 
subvariety of Y. 

Hence, Problem D.7 is related to the following: 
Problem D.8. Let X be a subvariety in a complex torus T. Let x, x'eX. 

Is it true then that dx(x, x')=0 if and only if there is a complex subtorus 
T'aX containing x and x'. In view of Example 22, it suffices to consider the 
case where X is of general type. Since the holomorphic bisectional curvature 
of X (with respect to the metric coming from a flat metric of T) is 
nonpositive by the equations of Gauss and Codazzi, complex submanifolds 
of T are good candidates for hyperbolic manifolds.7 

Problem D.9. Let T be a complex torus and S = Si+ • • • +Sk an ample 
divisor of T, where Si, • • • , Sk are nonsingular and S has normal crossings. 
Let Y=T-S . Is Y hyperbolically imbedded in T? According to Example 
20, Y admits a volume form with negatively bounded Ricci form and is 
(meromorphically) measure-hyperbolic. We do not even know if Y is 
hyperbolic or not. The following more modest question is still open 
(Griffiths [4]): Is every holomorphic map f:C~*Y constant? Special cases 
have been considered by Ax [1] and Ochiai [2]. 

(E) HOLOMORPHIC AND MEROMORPHIC AUTOMORPHISMS. 

Problem E.l. Let X be a complex space such that the complement of 
some compact subset K is hyperbolic. Does this imply that Aut(X) is a Lie 
group? The affirmative answer would unify Theorems 9.1 and 9.2. A 
supporting evidence is that Fujimoto [4] has shown that Aut(X) is a Lie 
group when X - K satisfies a condition closely related to the C-
hyperbolicity. 

Another possible generalization of Theorem 9.1 is to complex spaces 
which are hyperbolic modulo "small" subsets. 

Problem E.2. Let X be a complex space and 

A = {x eX; dx(x, y) = 0 for some point y^x}. 

Then X is hyperbolic modulo A. If A is "small" in a suitable sense, is 
Aut(X) a Lie group? If X-A is connected, the natural restriction 
homomorphism Aut(X)-»Aut(X~A) is injective. Since X-A is hyperbolic 
and Aut(X-A) is a Lie group, the question is whether the image of Aut(X) 
in Aut(X-A) is closed or not. This is related to extension problems. 

Somewhat related is the following question. 
Problem E.3. Let X be a measure-hyperbolic space. We know (Theorem 

9.6) that no complex Lie groups act on X. Is Aut(X) a Lie group? Consider 
the Ricci form associated to the intrinsic pseudo-volume form ^ x . (Since ^x 
may not be smooth, this should be taken in the distributional sense.) If the 

7 This question has been settled recently by M. Green. 
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Ricci form is positive definite in some open set, it is reasonable to expect 
Aut(X) to be a Lie group. So the problem is related to Problem B.l . 

Problem E.4. Let X be compact measure-hyperbolic. Is Aut(X) finite? 
We know that it is discrete (Theorem 9.7) and that it is finite if X is of 
general type (Theorem 9.8). There are examples of nonsingular quartic 
surfaces in P3(C) (due to Fano and Severi) with discrete but infinite 
automorphism group (see Matsumura and Monsky [1]). But I rather doubt 
that they are measure-hyperbolic. 

Problem E.5. Is Theorem 9.3 valid for a noncomplete hyperbolic space? 
Problem E.6. Let X be a hyperbolic space with finite total volume 

(measured either in terms of "Vx or the top-dimensional Hausdorff measure 
defined by dx). Is Aut(X) finite? The reasoning in Avérous and Kobayashi 
[1] shows that Aut(X) is compact. 

Problem E.7. Is Theorem 9.11 valid for a noncompact X with 
Vol(X)<oo? 

Problem E.8. Is Theorem 9.12 valid for a compact complex manifold of 
general type? 

The following problem has been studied by Eisenman [3] and Kulle [2]. 
Problem E.9. If ƒ is a proper holomorphic map of the unit ball in Cn, 

n ^ 2 , into itself, is it an automorphism of the ball? 
(F) ALGEBRAIC GEOMETRIC QUESTIONS. 

Problem F. l . Let X be a compact complex space of dimension n. I 
conjecture that if X is not of general type, i.e., if the Kodaira dimension 
K(X) is less than n, then ^ x = 0. A little more modest conjecture is the 
following. 

Problem F.2. Let X be a compact complex manifold with canonical line 
bundle K. If K > 0 (ample) or K = 0, then Vx is most likely to be trivial. (The 
assumption implies K ( X ) < 0 . ) This problem is related to Problem C.l. If 
K>0 , there exists a positive integer m such that K~m is very ample. Let £ be 
a nontrivial section of K~m. Then 0PX, £) is an upper semicontinuous 
function on X. If the answer to Problem B.l is affirmative so that log F is 
plurisubharmonic, then l o g ^ x , £) is also plurisubharmonic and hence con­
stant. Since £ vanishes at some point, this would imply ^ x = 0. A special case 
of this problem is given by 

Problem F.3. Let X be a nonsingular hypersurface of Pn+i(C). Let d be 
the degree of X. The problem is to show that ^ x = 0 if d ^ n + 2 . If d = 2, then 
dx = 0 and ^ x = 0 (Examples 1 and 2). If d = 3, then X is unirational (see, for 
instance, Manin [1]) and we have dx = 0 and ^ x = 0 (Examples 1 and 2). So 
the first nontrivial case is when X is a quartic in P3(C). The Fermât quartic 
in P3(C) is a Kummer surface (see Shioda [1]) and ^ x = 0 in this case 
(Example 2). Quartic surfaces and Kummer surfaces are all K3 surfaces. So 
we can ask if ^ x = 0 for any K3 surface. 

We shall now examine dx and ^ x for compact complex manifolds X of 
dimension 2 (called surfaces for simplicity's sake) using Kodaira's classifica­
tion of surfaces. Without loss of generality, we may assume that X is free of 
exceptional curves. Then there are seven classes (Kodaira [2], [4]): 
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(I) The class of projective plane and ruled surfaces. These are not hyper­
bolic and ^ x = 0. 

(II) The class of K3 surfaces. This class contains surfaces without 
meromorphic functions as well as Kummer surfaces and quartic surfaces. As 
we have already seen, dx = 0 and ^ X = 0 if X is a Kummer surface. On the 
other hand, for every integer g ^ 2 , there exists an algebraic K3 surface X 
containing a curve of genus g but no curves of smaller genus (see Safarevic 
[1]). This makes it difficult to prove the degeneracy of dx and ^ x . 

(III) The class of complex tori. Clearly, dx=0 and ^x=0. 
(IV) The class of minimal elliptic surfaces with even bi, Pi2>0 and 

KT^O. (Here, K is the canonical line bundle of X, P m =dimr(K m ) , and 
bi = the first Betti number.) In this case, X is not hyperbolic and ^ x = 0 (see 
Example 2). 

(V) The class of minimal algebraic surfaces with P2>0, cl>0. They are 
of general type and meromorphically measure-hyperbolic. Some of them are 
hyperbolic and some are not. Probably, dx is not identically zero. 

(VI) The class of minimal elliptic surfaces with odd bi, Pi2>0. (These 
are, of course, not algebraic.) As in the class (IV), X is not hyperbolic and 
^>x = 0. 

(VII) The class of minimal surfaces with b i = l , Pi2=0. (Again nonalge-
braic, of course.) This class contains Hopf surfaces and elliptic surfaces. 
Including the examples constructed by Inoue [1], the universal covering of a 
known surface in this class is either (i) DxC, (ii) C2, or (iii) C2-{0}. So, for 
all known examples of this class, we know that X is not hyperbolic and 
* x = 0. 

This classification table shows that a better understanding of K3 surfaces 
is needed to solve problems such as 

(a) whether every meromorphically measure-hyperbolic (algebraic) sur­
face is of general type, or 

(b) whether every hyperbolic or meromorphically measure-hyperbolic 
surface is algebraic. 

The classification of surfaces by Kodaira is stable under deformations. So 
we ask the following question. 

Problem F.4. Let X be a holomorphic family of compact complex man­
ifolds parametrized by the space S. Let 7r:X—>S be the projection and 
denote TT -1(S), seS, by Xs. 

(i) If Xo is hyperbolic (resp. (meromorphically) measure-hyperbolic) at 
one point oeS, does there exist a neighborhood U of o in S such that Xs is 
also hyperbolic (resp. (meromorphically) measure-hyperbolic) for s e U? 

Cowen [1] has shown that if X0 admits a hermitian metric with negatively 
bounded holomorphic sectional curvature, then there is a neighborhood U 
of o such that TT~1{U) admits such a hermitian metric. Hence, each Xs for 
seU admits such a hermitian metric. (This is a generalization of a similar 
theorem of Grauert and Reckziegel [1].) A result similar to that of Grauert, 
Reckziegel and Cowen can be proven for volume forms. If X0 is of general 
type, so is Xs for seU. These facts indicate that the answer to the question 
above is most likely to be affirmative. 
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(ii) Let {su} be a sequence of points in S converging to the point o e S. 
Assume, for each k, XSk is hyperbolic modulo a proper subvariety A (resp. 
(meromorphically) measure-hyperbolic). Does X0 have the same property? 

In view of a recent example of compact hyperbolic surface in Ps(C) by 
Brody and Green, we cannot make A empty. For some results in this 
direction, see Wright [1]. 

Problem F.5. Let Z, S = Si+ • • • +Sk be as in Example 20. Does there 
exist an algebraic manifold Z of general type which is a branched covering 
of Z branched over S? An affirmative answer to this would give a geometric 
construction of a volume form vY free of calculations as in Example 20. In 
Example 15, we constructed such a covering space when Z = Pn(C) and S 
consists of n4-2 hyperplanes in general position. When Z = Pn(C) and S is a 
nonsingular divisor of degree d ^ n + 3 , Carlson [1] constructed such a 
covering space Z as follows. Let p(z°, • • • , zn) be a homogeneous polyno­
mial of degree d defining S. Then the homogeneous polynomial 
q(z°, • • - , z n , z n + 1 ) = (zn + 1)d-p(z°, • • • , z n ) of degree d in n+2 variables 
defines a nonsingular hypersurface of degree d in P„+i(C). The projection 
7T : Z ^ P n ( C ) is given by (z°, • • • , zn, zn+1) = (z\ • • • , zn). 

Problem F.6. The so-called adjunction formula (see Kodaira [2]) states 
that if S is a nonsingular divisor of a compact complex manifold X, then 
Ks = (Kx - [S])s, where Ks and Kx denote the canonical line bundles of S 
and X, respectively. If Kx • [S] is ample, then X - S admits a volume form 
with negatively bounded Ricci form (see Example 20). In this case, Ks is 
also ample by the adjunction formula and S also admits a volume form with 
negatively bounded Ricci form (Theorem 7.1). This suggests the following 
question. To what extent can we claim that X - S is measure-hyperbolic if 
and only if S is measure-hyperbolic? 
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