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1. We announce here some results on equivariant local differential analy­
sis. The proofs will appear elsewhere [7]. We consider a compact Lie group 
G, acting orthogonally on Rn. C°°(x) (respectively C°°(Rn)) will denote the 
ring of germs of C°° functions around 0 GRn (the ring of C°° functions of 
Rn). The germ of Rn at 0 will be denoted by X. C°°(x)G, C°°(Rn)G will 
denote the G-invariant germs (functions). We shall consider parameter (germs 
of) spaces U, V, . . . , on which G acts, by definition, trivially. 

If f(x) E C°°(x)G, an unfolding of fix) is an F(x, u) G C°°(x, u)G such 
that Fix, 0) = fix). The unfolding Fix, u) is versai, if any other unfolding of 
fix), Hix, v) G C°°ix, v)G, can be induced from F, by a commutative diagram 

X x V * >X x U 

v—£—+u 
such that: 

(a) $ , ^ r , 
(b) <ï> is G-equivariant, 
(c) $ | I x O = id X, 
id) H = Fo<&. 

G also acts on smooth vector-fields on XiRn). We consider the invariant 
(germs of) vector-fields T°°iTX)G C r°°(7X) i.e., fields such that g&x) = 
Tgitix)) = %igx). T°°iTX)G is a C°°(jc)G-module moreover, if fix) G C°ix)G, 
the subset 

JGif) = {dm), ï e r~iTX)G} C C~ix)G. 

is an ideal, called the G-jacobian ideal off We shall assume that ƒ is given, and 
that dim^ C°°ix)G/JGif) < ~. 

By definition Fix, u) G C°°ix, u)G, unfolding of f is infinitesimally 
versai if the images of dF{x, 0)/dul9 . . . , bF{x, 0)/duk in C°°ix)G/JGif) 
generate the J?-vector space C°°ix)G/JGif). 
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THEOREM 1. If the unfolding F(x, u) G C~(x, u)G {of fix) G C°°(x)G) 

is infinitesimally versai, it is versai D 

This is a generalization of a result of J. Mather [5], R. Thorn [16], V. 
M. Zakalyukin [14], F. Sergeraert [10], G. Lassalle [3], and others. 

This theorem should be useful for "catastrophy theory in the presence 
of symmetry" [11], [12]. 

2. The main ingredient for proving Theorem 1 is the equivariant prepar­

ation theorem, which we describe now. 

Suppose G (compact Lie group) acts orthogonally on Rn, Rp; the germs 

of these two spaces, around 0, will be denoted by X, Y. 

We consider a germ of smooth map ƒ E C°°(X, Y) which is equivariant: 

f(gx) = gf(x). Then ƒ induces a local ring homomorphism C 0 0 ^)^ <-*— 

C~(y)G. 

THEOREM 2. If M is a finitely generated C°°(x)G-module, such that 

dim^ M/f*MC°°(y)G • M < <*>, then M is also finitely generated as a C°°(y)G-

module. D 

This is a generalization of a theorem of B. Malgrange [4] and J. Mather [6]. 

3. This paragraph provides some examples for Theorem 1. 
With G compact as before we consider the algebra of G-invariant polyno­

mials/? [x]G. By a classical result of Hubert [2], [13], this algebra is finitely 
generated, i.e. there is a polynomial map y = p(x) (Rn -^-> Rp) (given by 
finitely many homogenous polynomials, of positive degree), such that R [x]G 

< R[y] is surjective. It had been conjectured, for some time, that this is 
still true in the C°° case. In fact G. Glaeser [15] had proved it for G = the 
symmetric group, and for some time at least the local case for finite G has 
been known to result from the preparation theorem (see for example [1]). 
Note also that there is a way to work along the diagonals and go from the 
local to the global case. Now, the general compact case has been proved by 
G. Schwarz [9], and it is this result which makes the present paper possible. 
We hope to be able to complete the details of a different proof, in some 
future (including, possibly, the C^-case). Since Hubert's XlVth problem is 
solved negatively, the noncompact case is hopeless. 

Now if £ is a smooth G-invariant vector field on Rn, one has in a 
natural way, a direct image of £: p^, which is a continuous vector field on 
the semialgebraic subset pRn C RP. 

PROPOSITION 3. If % G T°°(TRn)G> then there is a smooth (C°°) 
vector field r? G r°°(TRp) such that r\\pRn = p*£. D 

The same result is true for germs, and we deduce that if tp(y) G C°°(y), 



88 V. POÉNARU 

and /((/?) C C°°(y) is the usual jacobian ideal of <p, then p*/(<p) D JG(p*y). 
(Note that p*V e C°°(x)G.) This leads to one way of finding elements of 
finite codimension in C°°(x)G. A better way is given by the following 

PROPOSITION 4. Let f(x) e C°°(x)G C C°°(x) such that 

dimR C°°(x)U(f) <oo. 

Let yt(x)9 . . . , yk(x) G C°°(x) be generators of C°°(x)lJ(f), as a vector space. 
Then C°°(x)G/JG(f) is a finite dimensional vector space, generated by the 
averages of the fy's: 

Here djuQr) is the Haar measure of G. The general idea behind all this 
is that once one has a smooth version of Hubert's finiteness theorem from the 
classical invariant theory, the Thorn-Mather type theory of singularities can be 
extended to the case when a compact Lie group is operating. We plan to 
develop stability theory on these lines (see also [8]). 
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