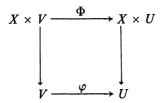
VERSAL UNFOLDINGS OF G-INVARIANT FUNCTIONS

BY V. POÉNARU

Communicated May 6, 1975

1. We announce here some results on equivariant local differential analysis. The proofs will appear elsewhere [7]. We consider a compact Lie group G, acting orthogonally on R^n . $C^{\infty}(x)$ (respectively $C^{\infty}(R^n)$) will denote the ring of germs of C^{∞} functions around $0 \in R^n$ (the ring of C^{∞} functions of R^n). The germ of R^n at 0 will be denoted by X. $C^{\infty}(x)^G$, $C^{\infty}(R^n)^G$ will denote the G-invariant germs (functions). We shall consider parameter (germs of) spaces U, V, \ldots , on which G acts, by definition, trivially.

If $f(x) \in C^{\infty}(x)^G$, an unfolding of f(x) is an $F(x, u) \in C^{\infty}(x, u)^G$ such that $F(x, 0) \equiv f(x)$. The unfolding F(x, u) is versal, if any other unfolding of f(x), $H(x, v) \in C^{\infty}(x, v)^G$, can be induced from F, by a commutative diagram



such that:

- (a) $\Phi, \varphi \in C^{\infty}$,
- (b) Φ is G-equivariant,
- (c) $\Phi|X \times 0 \equiv \mathrm{id} X$,
- (d) $H = F \circ \Phi$.

G also acts on smooth vector-fields on $X(R^n)$. We consider the *invariant* (germs of) vector-fields $\Gamma^{\infty}(TX)^G \subset \Gamma^{\infty}(TX)$ i.e., fields such that $g\xi(x) = Tg(\xi(x)) = \xi(gx)$. $\Gamma^{\infty}(TX)^G$ is a $C^{\infty}(x)^G$ -module moreover, if $f(x) \in C^{\infty}(x)^G$, the subset

$$J_G(f)=\{df(\xi),\,\xi\in\Gamma^\infty(TX)^G\}\subset C^\infty(x)^G.$$

is an ideal, called the G-jacobian ideal of f. We shall assume that f is given, and that $\dim_R C^{\infty}(x)^G/J_G(f) < \infty$.

By definition $F(x, u) \in C^{\infty}(x, u)^G$, unfolding of f, is infinitesimally versal if the images of $\partial F(x, 0)/\partial u_1, \ldots, \partial F(x, 0)/\partial u_k$ in $C^{\infty}(x)^G/J_G(f)$ generate the R-vector space $C^{\infty}(x)^G/J_G(f)$.

AMS (MOS) subject classifications (1970). Primary 58C25.

THEOREM 1. If the unfolding $F(x, u) \in C^{\infty}(x, u)^G$ (of $f(x) \in C^{\infty}(x)^G$) is infinitesimally versal, it is versal. \square

This is a generalization of a result of J. Mather [5], R. Thom [16], V. M. Zakalyukin [14], F. Sergeraert [10], G. Lassalle [3], and others.

This theorem should be useful for "catastrophy theory in the presence of symmetry" [11], [12].

2. The main ingredient for proving Theorem 1 is the equivariant preparation theorem, which we describe now.

Suppose G (compact Lie group) acts orthogonally on \mathbb{R}^n , \mathbb{R}^p ; the germs of these two spaces, around 0, will be denoted by X, Y.

We consider a germ of smooth map $f \in C^{\infty}(X, Y)$ which is equivariant: f(gx) = gf(x). Then f induces a local ring homomorphism $C^{\infty}(x)^G \xleftarrow{f^*} C^{\infty}(y)^G$.

THEOREM 2. If M is a finitely generated $C^{\infty}(x)^G$ -module, such that $\dim_R M/f^*MC^{\infty}(y)^G \cdot M < \infty$, then M is also finitely generated as a $C^{\infty}(y)^G$ -module. \square

This is a generalization of a theorem of B. Malgrange [4] and J. Mather [6].

3. This paragraph provides some examples for Theorem 1.

With G compact as before we consider the algebra of G-invariant polynomials $R[x]^G$. By a classical result of Hilbert [2], [13], this algebra is finitely generated, i.e. there is a polynomial map $y = \rho(x)$ ($R^n \xrightarrow{\rho} R^p$) (given by finitely many homogenous polynomials, of positive degree), such that $R[x]^G \xrightarrow{\rho^*} R[y]$ is surjective. It had been conjectured, for some time, that this is still true in the C^∞ case. In fact G. Glaeser [15] had proved it for G = the symmetric group, and for some time at least the local case for finite G has been known to result from the preparation theorem (see for example [1]). Note also that there is a way to work along the diagonals and go from the local to the global case. Now, the general compact case has been proved by G. Schwarz [9], and it is this result which makes the present paper possible. We hope to be able to complete the details of a different proof, in some future (including, possibly, the C^k -case). Since Hilbert's XIVth problem is solved negatively, the noncompact case is hopeless.

Now if ξ is a smooth G-invariant vector field on R^n , one has in a natural way, a *direct image* of ξ : $\rho_*\xi$, which is a continuous vector field on the semialgebraic subset $\rho R^n \subseteq R^p$.

PROPOSITION 3. If $\xi \in \Gamma^{\infty}(TR^n)^G$, then there is a smooth (C^{∞}) vector field $\eta \in \Gamma^{\infty}(TR^p)$ such that $\eta | \rho R^n \equiv \rho_* \xi$. \square

The same result is true for germs, and we deduce that if $\varphi(y) \in C^{\infty}(y)$,

and $J(\varphi) \subset C^{\infty}(y)$ is the usual jacobian ideal of φ , then $\rho^*J(\varphi) \supset J_G(\rho^*\varphi)$. (Note that $\rho^*\varphi \in C^{\infty}(x)^G$.) This leads to one way of finding elements of finite codimension in $C^{\infty}(x)^G$. A better way is given by the following

PROPOSITION 4. Let
$$f(x) \in C^{\infty}(x)^G \subset C^{\infty}(x)$$
 such that

$$\dim_R C^{\infty}(x)/J(f) < \infty.$$

Let $\varphi_1(x), \ldots, \varphi_k(x) \in C^{\infty}(x)$ be generators of $C^{\infty}(x)/J(f)$, as a vector space. Then $C^{\infty}(x)^G/J_G(f)$ is a finite dimensional vector space, generated by the averages of the φ_i 's:

$$\psi_i(x) = \int_G \varphi_i(gx) \, d\mu(g) \in C^{\infty}(x)^G. \quad \Box$$

Here $d\mu(g)$ is the Haar measure of G. The general idea behind all this is that once one has a smooth version of Hilbert's finiteness theorem from the classical invariant theory, the Thom-Mather type theory of singularities can be extended to the case when a *compact* Lie group is operating. We plan to develop stability theory on these lines (see also [8]).

BIBLIOGRAPHY

- 1. E. Bierstone, Smooth functions invariant under the action of a finite group (to appear).
- 2. J. Dieudonné and J. Carrel, *Invariant theory, old and new*, Advances in Math. 4 (1970), 1-80. MR 41 #186.
 - 3. G. Lassalle, (to appear).
- 4. B. Malgrange, *Ideals of differentiable functions*, Studies in Math., no. 3, Tata Institute of Fundamental Research, Bombay; Oxford Univ. Press, London, 1967. MR 35 #3446.
 - 5. J. Mather, Right equivalence (to appear).
- 6. ———, Stability of C[∞] mappings. I-IV, Ann. of Math. (2) 87 (1968), 89–104; Ann. of Math. (2) 89 (1969), 254–291; Inst. Hautes Études Sci. Publ. Math. No. 35 (1968), 279–308; Inst. Hautes Études Sci. Publ. Math. No. 37 (1969), 223–248.
 MR 38 #726; 41 #4582; 43 #1215a, b.
 - 7. V. Poénaru, Déploiement des fonctions G-invariantes (to appear).
- 8. ———, Un théorème des fonctions implicites . . . , Inst. Hautes Études Sci. Publ. Math. No. 38 (1970), 93-124.
- 9. G. Schwarz, Smooth functions invariant under the action of a compact Lie group, Topology 14 (1975), 63-69.
- 10. F. Sergeraert, Un théorème des fonctions implicites, Ann. Sci. École Norm. Sup. (1972), 559-660.
 - 11. R. Thom, Stabilite structurelle et morphogenese, Benjamin, New York, 1972.
 - 12. ——, La théorie des catastrophes, in Manifold, Warwick, 1973.
- 13. H. Weyl, The classical groups. Their invariants and representations, Princeton Univ. Press, Princeton, N. J., 1939. MR 1, 42.
- 14. V. M. Zakaljukin, A theorem on versality, Funkcional. Anal. i Priložen. 7 (1973), no. 2, 28-31 = Functional Anal. Appl. 7 (1973), 110-112. MR 47 #9670.
- 15. G. Glaeser, Fonctions composées différentiables, Ann. of Math. (2) 77 (1963), 193-209. MR 26 #624.
- 16. R. Thom, Modèles mathématiques de la morphogenese, Inst. Hautes Études Sci., 1971.

DÉPARTMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES D'ORSAY, 91-ORSAY, FRANCE