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1. This note is concerned with the pure initial-value problem for the nonlinear 
diffusion equation 

0 ) " * - " * * - / ( " ) = 0 ( - o o < X < o o , , > ( ) ) , 

with u(x, 0) = 0(x). This problem has attracted an increasing amount of attention 
in recent years, one of the central questions being whether or not the solution 
u(x, t) tends as t —^°°toa travelling wave solution U{x - ct). ([1] gives a 
general bibliography.) We adopt the usual normalization of the problem by assum­
ing throughout that ƒ G C1 [0, 1], /(O) = f{\) = 0, 0 < 0 < 1, so that, as is 
well known, 0 < u(x, t) < 1 for all x, t. 

2. A typical convergence result that we can prove is the following. 

THEOREM A. Let f e C1 [0, 1], with /(O) = / ( l ) = 0,/'(O) < 0, f (l) < 0, 

f(u)<0 for0<u<a0, f(u)>0 forat<u<l9 

and assume that there exists a travelling wave solution U(x - ct) with U(— °°) = 
1, tf(°°) = 0, 0 < U < 1. Let 0 satisfy 0 < 0 < 1, lim inf^ ,^ 0(x) > ax, 
lim sup^^ 0(x) < a0. Then there exists some x0 such that, 

lim \u(x, t) - U(x - ct - x0)\ = 0 
t-*oo 

uniformly in x. If 0 is monotonie, then the approach is in fact exponential 

We remark that such a travelling wave U can be shown to be necessarily 
monotonie, and it is an obvious consequence of Theorem A that U is unique up 
to translation. This can, of course, be shown directly (Theorem C below), and 
conditions under which U will exist are discussed in Theorem D. 

In some cases the solution develops into a pair of diverging travelling waves, 
and this is relèvent to the case where 0 is of compact support. 

THEOREM B. Let f satisfy the hypotheses of Theorem A, and suppose c > 
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0. Let 0 satisfy 0 < 0 < 1, lim s u p ^ ^ <p(x) < a0, and 0(x) > ax + r\ for some 
r} > 0 awe/ a sufficiently long x-interval. Then there exists some x0 and xx such 
that, uniformly in x, 

lim \u(x, t) - U(x - ct - x0) - U(- x - ct - xx) + 1| = 0. 

We remark that the condition c > 0 is equivalent to f^fdu > 0. 
To prove Theorems A and B, we write the solution as a function u = 

u*(z, t), where z = x - et. A comparison technique based on the maximum 
principle is used to obtain information about u* as z, t —• °° and to conclude that 
the set {u*( • , t), t > ô > 0} is relatively compact in C 3 ( - °°, °°). A Lyapunov 
functional is then used to show that the limit set consists of just one travelling 
wave solution. 

3. If the initial value 0 is monotonie, then it is standard that u remains 
monotonie in x for all t. Hence, we can change to u, t as independent variables, 
with v = ux as the dependent variable. Differentiating (1) with respect to x, we 
obtain the corresponding problem for v: 

(2) vt - v\u +fvu -fuv = 0 (0 < u < 1, t > 0), 

with 

(3) t,(0,f) = 0, Ü ( 1 , 0 = 0 , U(K, 0) = *(!<). 

A travelling wave solution of (1) is a steady solution of (2), and we are interested 
in solutions for which u(x, i) is monotonie decreasing in x, so that v(u, t)<0 

for u in (0, 1). 

THEOREM C. Iff G C1 [0, 1], with /(O) = f(\) = 0, and if f(u) <0foru 

sufficiently small, while f(u) > 0 for u sufficiently near 1, then there is at most 
one steady solution of (2) satisfying v(0) = u(l) = 0, v < 0 in (0, 1). 

The steady form of (2) integrates to give vu + f/v = constant = - c, say, 
c\ being in fact the wave-speed. Theorem C is proved by showing that there is a 
monotonie dependence of v on c, and this monotonicity is also used to discuss 
existence of steady solutions. If ƒ has just one interior zero in (0, 1), then there 
does exist a (unique) steady negative solution (with zero boundary data) over 
[0, 1] , and there is associated with this a characteristic wave-speed. If ƒ has more 
interior zeros, the situation is more complicated. 

THEOREM D. Suppose that [0, 1] is divided into p subintervals [u0, u2], 
[u2> w 4 ] , . . . , [u2p_2, u2p], where u0 = 0, u2p = 1, and that in each subinter-
val (u2r, u2r+2) there exists a point u2r+1 such that either 

f<0 in(u2r,u2r+1), f>0 in(u2r+1,u2r+2),f
u

u^2fdu>0, 

or 
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f<0 in(u2r,u2r+1), f>0 in (u2r+l9u2r+2), J ^ + 2 / < 2 w < 0, 

or 

f<0 in(u2r,u2r+1), f>0 in(u2r+1,u2r+2). 

Then there exists a subset of {u2r}, say {U-}, i = 0, . . . , k, with U0 = 0, 
Uk = 1, such that there is a (unique) steady negative solution of (2) (with zero 
boundary data) over [U-, Ui+1], but not over any [u2r, u2s] unless it is a sub-
interval of some [Ut, Ui+ x ] . Further, if Cj is the wave-speed associated with 
[Uit Ui+1]9thenci>ci+1. 

The physical interpretation of this is that the travelling waves corresponding to 
the subintervals [u2r,u2r+2\ of any [Uit Ui+1] have merged into a single travel­
ling wave, but the travelling wave over [U., Ui+1] is faster than that over [Ui+1, 
Ui+2], since ci > ci+1, so that the two are moving apart (or at least not closing) 
and no single travelling wave can embrace them both. 

By applying the maximum principle and ideas of sub- and super-solutions to 
the problem (2)—(3), we obtain 

THEOREM E. If f satisfies the conditions of Theorem D, and <£> < 0 in (0,1), 
then the solution of (2)—(3) converges uniformly in each [Uif Ui+1] as t —• °° 
to the steady negative solution (with zero boundary data) over [U., Ui+1]. 

This theorem can be interpreted with x and t as independent variables and 
leads to a result comparable with Theorem A. 
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