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Elementary induction on abstract structures, by Yiahnis Nicholas Mos-
chovakis, Studies in Logic and the Foundations of Mathematics, vol. 77, 
North-Holland, Amsterdam; American Elsevier, London, New York, 
x + 218pp., $17.75. 

This review is divided into three parts. In the first section we define, by 
means of examples, the objects studied in the book under review. The 
second section discusses the book itself. The third section is more technical. 
It discusses a way that the second-order assumption of "acceptability" 
imposed on structures in Chapter 5 can be weakened to make the theory 
developed in Chapters 5-8 relevant to ordinary first-order model theory. 

Inductive definitions. The way to tell a logician from his mathematical 
colleague is by his attention to the language of mathematics. The logician 
takes as a fundamental tenet that light can be shed on mathematical 
problems by simply paying attention to, and then analyzing, the language in 
which mathematics is formulated and carried out. This book presents a 
detailed analysis of one part of the language of mathematics, namely 
inductive (to be precise, first-order positive inductive) definitions on a fixed 
structure %. 

An inductive definition can be viewed as a monotone operator T on sets, 
monotone in the sense that X ç Y implies r (X)çT(Y). It has associated 
with it certain stages I ? £ l r £ • • • £ l ? • • •, a smallest fixed point I r , and a 
closure ordinal \\T\\, equal to the least ordinal number (3 such that I r = 

A. ERDÖS NUMBERS. We begin with a slightly frivolous example which 
shows that inductive definitions arise in real life. Let M be the set of 
mathematicians with a distinguished element eeM. For X ç M , let T(X) be 
the set of those mathematicians who have published a joint paper p and one 
of the authors of p is in X. Let I°={e}, I n + 1 =r( I n ) and let I r be the union of 
the various In. If e is properly chosen, then T is an inductive definition of the 
set of mathematicians that have Erdös numbers,1 and In is the set of 
mathematicians with Erdös number ^ n. Notice that I r is a fixed point of T, 
r(Ir)=Ir , even if there are an infinite number of authors of some paper. 
Thus the closure ordinal is at most co, the first infinite ordinal. 

B. A MATE FOR WHITE IN a MOVES. Consider some two-person game like 
chess. Let W be the set of positions from which white has a winning 
strategy. We can give a more informative inductive definition of this set as 
follows. For any set X of positions, let T(X) be the set of all positions such 
that, for any move of black, white has a response putting him in X. Let 1° be 
the set of positions which are mates for white and let In+1 be r ( I n ) . Thus In 

is the set of positions which are mates for white in n moves. In ordinary 
chess, where each player has a finite number of possible moves at any one 
turn, W is simply the union of the various In, and W is the smallest fixed 

1 The notion of Erdös number was defined in What is your Erdös number? by C. Goffman, 
Amer. Math. Monthly 76 (1969), 791. 
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point of T. But suppose we modify the rules of chess to give the players an 
infinite number of legal moves, at least in certain positions. For example, 
imagine the board extended infinitely far to the left (i.e., 8x*co instead of 
8x8). Thus, for example, on his first move white could move his queen's 
rook any finite number of squares to the left. In this variant of chess, white 
can find himself in a winning position without having an upper bound on the 
number of moves he will need to win. In terms of T this amounts to saying 
that Tfljn In) properly contains Un In. Let r=F([Jn In) and, more generally, 
I a =r(Up<aI p ) for any ordinal a. (This agrees with the earlier definition on 
successor ordinals since the stages are increasing.) Then Ia might be called 
the set of positions where white has a win of rank ^ a , and I r = U« I" *s the 
set W. It is an open problem to determine the closure ordinal of this 
inductive definition.2 

This example is not as frivolous as it might appear. Chapter 4 of the book 
is devoted to representing inductively defined sets as the sets of winning 
positions in certain infinite regular two-person games. This representation 
theorem has important consequences for the general theory of inductive 
definitions. It has also led Vaught3 to some important developments in 
model theory. 

C. THE CANTOR-BENDIXSON DERIVATIVE. An inductive definition builds a 
set up from below. The dual notion is that of coinductive definition. A 
coinductive definition T shrinks down to a set Jr from above. One can move 
from one notion to the other by taking complements, but usually one notion 
is more natural than the other. 

Let X be a compact, Hausdorff space. For any closed set Y let dY be the 
set of limit points of Y. (For other Y's let dY=Y.) Since d is monotone we 
can use it as a coinductive definition. Let J °=X and for larger ordinals a let 
J a = d(rip<aip). Each Ja is a closed set and Jr=f]^ is the largest perfect 
closed subset of X. If X is separable, then the closure ordinal of T, the least 

2 The reviewer learned of these variants of chess from H. J. Keisler, who discovered the wins 
for white of ranks to and w+1 illustrated below. (It is black's move; the black pieces are 
barred.) A. Ehrenfeucht has discovered positions of rank a> • n. It seems possible that there are 
positions of rank o>2, but no one has written one down. The general theory of inductive 
definitions shows that all positions p e W, have rank a recursive ordinal, but this seems far too 
generous. An interesting conjecture of Keisler is that if peW, then white has an effective 
strategy starting from p. 
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Lecture Notes in Math, Vol. 337, Springer-Verlag, New York, 1973, pp. 574-598. 
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a such that J r = f W a ^ p , is a countable ordinal and, furthermore, each stage 
Jp loses at most a countable number of points. This analysis is what goes 
into the proof of the Cantor-Bendixson theorem: every separable, compact 
Hausdorff space is the union of a perfect closed set Jr and a countable set 
(the union of the countable collection of countable sets thrown out along the 
way). 

D. Ill SETS OF NATURAL NUMBERS. Ilî sets are sets which can be defined by a 
second-order formula which, in prenex form, has no second-order existential 
quantifiers. Kleene gave an analysis of the 111 sets over the structure 
N=(N, 0 , 1 , + , •) using recursion theory. Spector used Kleene's analysis to 
show that every Ilî set over N is inductively definable (the converse always 
holds) and that the least nonrecursive ordinal is the supremum of the closure 
ordinals of first order inductive definitions over N. In this way, Kleene's 
theory of hyperarithmetic and Ilî sets can be viewed as the theory of 
inductive definitions over the structure N. 

This theory has had many applications in logic. It is awkward to apply 
directly to other fields, say algebra or topology, however, since one is not 
usually given a structure in terms of N. This book makes a fresh start by 
developing the theory over an arbitrary structure, from the very beginning. 

A survey of the book. The book is a carefully written research mono­
graph. It is recommended reading for anyone with an interest in either model 
theory or definability theory (sometimes called generalized recursion 
theory). There is little doubt in the reviewer's mind that the book is an 
important chapter in the unfolding story of fragments of second-order logic. 

Written in a serious, no nonsense (abstract or otherwise) style, the book 
follows a straight line from almost first principles to one of the frontiers of 
the subject. The book contains nine chapters. The first four treat that part of 
the theory which goes through over an arbitrary structure. The next four 
chapters deal with those parts of the theory which need some special 
assumptions about the structure until, in section 8E, the book is back where 
the theory began, on N. (This section contains the nicest treatment I know 
of the Suslin-Kleene theorem, presented here in the form: The Aï sets form 
the smallest effective cr-ring of subsets of N.) Chapter 9 relates inductive 
definitions to the theory of admissible sets. 

Chapter 1 contains basic definitions and discusses the closure properties of 
the class of inductively definable relations. For example, it is closed under 
A , v , 3, V and certain forms of transfinite induction, as long as you use 
previously defined inductive relations in a positive way. The coinductive 
relations are the complements of the inductive relations. A relation which is 
both inductive and coinductive is called hyperelementary. 

Chapter 2 discusses the stages of an inductive definition and proves the 
important Stage Comparison Theorem, which shows how to relate the stages 
of two different inductive definitions. It also assigns to each structure 91 an 
important invariant of SI, the ordinal K(SI) which is the supremum of the 
closure ordinals of the inductive definitions on 91. 
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Chapter 3 is one of the main chapters of the book. It presents the basic 
structure theory for the inductive and hyperelementary relations. Chapter 4 
proves the game-theoretic representation theorem mentioned in Example B. 

In Chapter 5 the author starts chasing down results which do not hold in 
the complete generality of the first four chapters. 

(1) There is a hyperelementary relation which is not first order definable. 
(2) There is an inductive relation R of n + 1 arguments whose various 

sections Ry={(xi • • • x„) | R(y, Xi • • • x„)} range over all n-ary inductive re­
lations as y ranges over 21. 

(3) There is an n-ary inductive relation on SI which is not hyperelementary. 
These are three of the results the author is after. The first tells us that we are 
really in the domain of second-order logic. The second has a number of 
important consequences, including (3). To obtain these kinds of results one 
needs a certain amount of coding ability not available in arbitrary structures. 
The notion used here is that of acceptable structure, a structure SI with a 
definable pairing function and a definable copy of the natural numbers. 
Chapters 6 and 7 go into second-order inductive definitions and second-
order characterizations of the class of hyperelementary relations, still in the 
context of acceptable structures. 

Chapter 8 restricts attention to countable, acceptable structures. The main 
results of the chapter are, for such structures, the following: 

(4) Every IIÎ relation is inductive, and hence every A} relation is 
hyperelementary. 

(5) If © is a YA definable set of relations which contains a 
nonhyperelementary relation, then © contains 2X° relations. 

The proof of (4) uses the game-theoretic characterization of Chapter 4; 
(5) uses (4). There are also some examples of other results known for N that 
do not lift to arbitrary countable acceptable structures. 

In Chapter 9 the author introduces the notion of a Spector class of 
relations. The results of earlier chapters, like (2) above, show that the 
inductive relations on an acceptable structure form a Spector class. He then 
ties up the notion of Spector class with the theory of admissible sets. This 
chapter is an introduction to a new set of topics currently the subject of 
active research4. 

So much for the abstract book. The physical book deserves mention too, 
especially in these days, for it is beautifully produced, easy to use, and a 
pleasure to read. The frequency of misprints and mistakes is incredibly low. 
The only one worth pointing out (that the reviewer has found) is that the 
theorem attributed to Mansfield on p. 135 (result (5) above for the case of 
N) is due to J. Harrison; Mansfield improved the result. 

Unacceptable structures. To this reviewer, the only serious objection to 
anything in the book is the use of acceptability. The restriction to acceptable 

4 An important application of Chapter 9 appears in the following paper, which might well be 
considered as a chapter of the book: Y. N. Moschovakis, On nonmonotone inductive definability, 
Fund Math. 82 (1974) 39-83. 
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structures seems harmless enough to the recursion theorist, since the struc­
tures he encounters are always acceptable (or almost acceptable, which 
means that some expansion of the structure by hyperelementary relations is 
acceptable, which is enough for the results of the book), but it could be a 
major obstacle to the model theorist interested in pursuing the subject of 
inductive definability. Many of the structures the model theorist confronts 
(for example, structures that arise from compactness arguments or ultra-
products) are not acceptable, or even almost acceptable. He should not give 
up, though, for this can be a blessing in disguise and there is a simple change 
that makes most of the theory go through in a first-order context. Further, it 
actually makes the theory of Chapters 5-9 shed light on first-order model 
theory. 

The simplest way out of acceptability is suggested by Exercise 2.7, to the 
effect that 21 is almost acceptable iff 21 has a hyperelementary pairing 
function and K(21)>CO. NOW it turns out, as the reader of the book can verify 
without too much extra work, that most of the results claimed for acceptable 
structures actually hold for structures with a definable (or hyperelementary) 
pairing function, a first-order notion. For example, of (l)-(5) above, only (1) 
becomes false. And when one does come across a result which fails, one just 
adds the extra hypothesis that K(2I)>CO. But, and this is the important point, 
it is exactly for those 21 with K(21)=CO that the theory has something exciting to 
say for ordinary first-order model theory, for then hyperelementary is the same 
as first-order definable. Pursued to its logical conclusion, a result like (5), 
which started out as a generalization of a theorem from recursion theory, 
also becomes a generalization of the Chang-Makkai-Reyes theorem of 
first-order model theory5. Such observations lend support to our claim that 
the study of the inductive and hyperelementary relations is an important line 
of attack on fragments of second-order model theory. 

ONE FINAL REMARK. The theory developed in this book is entirely "local," 
that is, it deals with inductive definitions on a fixed structure 21. The 
"global" theory of inductive definitions is untouched. As an example of a 
global problem that arises from algebraic examples, we mention the follow­
ing: Give a syntactic characterization of those first-order inductive defini­
tions T which, in all models of some first-order theory T, have closure 
ordinal ||r|| at most CÜ. Other questions will suggest themselves to the 
model-theorist who pursues the theory of inductive definitions presented in 
this attractive and important book. 

K. JON BARWISE 

5 Some more details of this approach can be found in Chapter 6 of the reviewer's 
forthcoming book Admissible sets and structures (Springer-Verlag). In that book we also discuss 
another approach which gets rid of all coding assumptions by allowing slightly extended 
inductive definitions. 


