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Let G be a connected algebraic group with a given representation on a vec­
tor space K. Let W be a sub space of V. I propose to study the union of all the 
translates of W by G, G • W. 

Let P be a subgroup of G that stabilizes W. Let X —• G/P be the homoge­
neous vector bundle over G/P, associated to the representation of P on W. Expli­
citly 

X = {(g, w) G G x W modulo (g, w) ~ (gp~l, pw) for p G P}. 

The representation G x V —• V induces a morphism ƒ: X —• V. The image of ƒ 
is G • R/. 

THEOREM. Assume G/P is complete. Then G • W is a closed subvariety of 

V. Furthermore, if the characteristic of the ground field is zero, and if the actions 

of G on V and of P on W are completely reducible, then G - W is a normal Cohen-

Macaulay variety, and if f is birational, then G - W has rational singularities. 

The proof of this theorem uses the Borel-Weil-Bott theorem on the cohomo-
logy of homogeneous vector bundles [1] together with some facts surrounding the 
theory of rational resolutions [5]. 

The application that I have in mind for this theorem is the study of the sin­
gularities of the varieties of complexes introduced by Buchsbaum and Eisenbud 

PL 
I will first state what these varieties are. Let K°, . . . , Kn be a sequence 

of vector spaces. Let F be the direct sum of~Hom(A:0, À: 1 ) , . . . , Yiom(Kn~l, Kn). 

A point a in V is denoted (a1, . . . , an), where at G Hom^ 1 " 1 , Kl). A point a 

in V represents a complex if ai+ x ° at: = 0 for 0 < i < n. The rank of a is the se­
quence of integers, (rank ax, . . . , rank an), where rank b is the dimension of the 
image of the homomorphism b. If (m1, . . . , mn) is the rank of a complex, then 
mx < d imK° ,m n < dimKn, and mi + mi+ x < dimKl for 0 < / < n. Converse­
ly, any such sequence is the rank of a complex. Let M be the set of such se­
quences. 

If m G M, define the variety of Buchsbaum and Eisenbud, B-E(m), to be the 
variety of complexes a, such that rank at < mt for 1 < i < n. 
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THEOREM. In characteristic zero, a Buchsbaum-Eisenbud variety of com­
plexes is a normal Cohen-Macaulay variety and has rational singularities. 

Of course, this last theorem should hold in any characteristic. The ideal of 
functions vanishing on B-E(m) should be generated by the quadric relations, cor­
responding to the complex condition, and the determinants, corresponding to the 
rank conditions. One should be able to prove that these functions generate a 
prime ideal by the inductive method used by Eagon and Hochster [3] where they 
settle the case when n = 1 (see also [4]). 

In the rest of this note, I will sketch how the first theorem implies the sec­
ond. I plan to publish the first theorem separately. 

Let G = GUK1) x . . . x GUKn). Consider a sequence L = (L\ . . . , Ln)9 

where V is a subspace of dimension mi of Kl. Let W(L) be the subspace of V 
consisting of a's such that the image of at C I ' C the kernel of ai+ x whenever 
either statement makes sense. Let / be a fixed sequence of subspaces as above. 
Let W = W(J). Let P be the product of the stabilizer of ƒ'* in GUK1) for 1 < 
i < n. P stabilizes W. The homogeneous vector bundle X is the totality of all 
pairs L and a such that a E W(L). 

G/P is the space of Z,'s, which is a product of Grassmannian. Hence, GlP is 
complete. The mapping ƒ sends (L, a) onto a. The image is clearly all of B-E(m). 
If a point a G B-E(m) satisfies the rank conditions exactly, there is a unique pair 
(Z,, a) in X. In fact, V must be the image of ay. The morphism ƒ is birational be­
cause it is an isomorphism near any such "general" point of B-E(/w). 

It remains to verify to complete reducibility assumptions. Assume the char­
acteristic is zero. Then, as G is a reductive group, any of its representations are 
completely reducible. As for P acting on W, note that a G W is determined by 
the induced homomorphisms 

Thus, the action of P on W is equivalent to the action of its quotient GI^/1) x 
GLCA'1//1) x . . . x GL(/W), which is again reductive. 

Therefore, we have not only found a pleasant resolution of the singularities 
of B-E(m), but we conclude that the first theorem implies the second. 
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