BULLETIN OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 81, Number 3, May 1975

VOLTERRA-STIELTJES INTEGRAL EQUATIONS WITH
LINEAR CONSTRAINTS AND DISCONTINUOUS SOLUTIONS
BY CHAIM SAMUEL HONIG

Communicated by Alberto Calderéon, November 11, 1974

X and Y denote Banach spaces; we consider systems of the form
) O = y(te) + [} doK(t, 0) - 7(0) = 1O = f o),

(F Flyl =c,

where y, f € G([a, b], X) (the space of regulated functions g: [q, b] — X,
i.e., g has only discontinuities of the first kind); K € G"°® (see §2) and F €
L[G([a, b], X), Y] (linear constraint). (K) includes linear Volterra integral
equations, linear delay differential equations, differential equations y' + A’y = f t
with the meaning that we have

@) yO -¥() + [;d40) - ¥©) =f®) - () foralls, 1€ [a, b].

In §2 we give the existence of the resolvent for (K) and in §3 for (L);
in §4 we find the Green function for the system (K), (F). The results of §1
are used in the proofs. All results of this announcement may be extended to
open intervals and Y a separated sequentially complete locally convex TVS.
The proofs will appear in [H.3].

1. A division of [a, b] is a finite sequence d: t; =a <t <+ <t,=b.
We write |d| =n and Ad = sup, ¢;<,|t; — t;_;|. The set D of all divisions of
[a, b] is ordered by refinement and lim, ;,x, denotes the limit according to
the associated net. For a: [q, b] — L(X, Y) and f: [a, b] — X we define
the usual Riemann-Stieltjes operator integral

id|

Jade@ 1@ = lim 3 o) - altip)] * £&)

0 i=1
where §; € [t,_,, t;] (see [G], [H.1], [D]), and the interior integral
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o) - — lim 1| _ e
Jade® - 7@ =lim 3 [otw) - ot )] - 1)

where £ € ]¢,_,, t;[ (see [K], [H, p. 96]), when these limits exist. The
existence of the first integral implies the existence of the second one and
reciprocally, if a and f are bounded with no common discontinuity. We define

SVla] =SV, )] = sup SV,[c]
deb

where

idl

> o) —olt;_ )] - xflix; € X, lxll < 1%.
i=1

SV,[e] = sup 3

If SV[a] < o we say that « is of bounded semivariation and we write a €
SV([a, b], L(X, Y)); if we have further a(a) = 0 we write a € SV ([a, b], L(X, Y)).
For u: [a, b] — L(X, Y) we define s[u] = sup,c s, [u], where

Id|

2 ult) - x;

i=0

b, €X, Il < lg

54[u] =sup {

and we write 4 € s([a, ], L(X, Y)) if s[u] < oo. For f € G([a, b], X) we de-
fine f () =f(@-) ifa<t<b and f(a-) = 0; we write f € G_([q, b], X) if
f_=fand fE€cy([a, b], X)if f_=0.

THEOREM 1. The mapping
(o, u) €SVy(la, 0], L(X, Y)) x s([a, b], L(X, Y))
> F=F,+F,€L[G(s b], X), Y]

defines a bicontinuous isomorphism of the first Banach space onto the second,
where for f € G([a, b], X) we define
FIf1= [Pda() - f@®) and F,f1= X u®): [fO-FE]
a<t<b
We have ||IF, || = SV[a], a(t) * x = F[x),, ,1x] and u(t) * x = Flx{x].
For X = Y = R this theorem is due to Kaltenborn [K].

THEOREM 2. Given a € SV([c, d], L(X, Y)), h: [¢c,d] x [a, b] — LX)
which is a regulated function in the first variable and uniformly of bounded
semivariation in the second variable (i.e., h* € SV([a, b}, L(X)) for every
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t € [c, d] and sup ¢, 4SVIh'] < o, where h'(s) = h(t, 5)) and g € G([a, b], X)
we have h € SV([a, b], L(X, Y)), and §€ G([c, d], X), where

1) = [da(r) - h(t, 5) and @) = [Ldn(t, 5) - £6),
and

(1) f:ds[f‘:da(t) o h(t, s)]g(s) - [ da(t)[ [P s- g(s)]

If [c, d] = [a, b] and g is continuous we have the formula of Dirichlet
?) fi’ [ f: da(t) ° h(t, s)] dg(s) = f: do(?) - [ f Yh(t, ) dg(S)]-

If [e,d] = [a, b], « € A (see §3) and h € G* (see §2) we have (2).

REMARK. (1) generalizes a theorem of Bray proved for X = Y = R [B].
2. For U: [a, b] x [a, b] — L(X) we consider the following properties

V) lim S¥{,-5,045[U7] =0 foralls, ¢ € g, ],
(SV*°) lim sup SV, 5 5451 [U*] = 0.
640s,1

We write U € G"° if U is bounded, regulated as a function of the first
variable and satisfies (SV"°). G"° is a Banach space when endowed with the
norm [|UIl = Ul + sup, < ,<,SV[U].

THEOREM 3. Given K € G"° we have:
L. There is one and only one element R € G}° (i.e. R € G"° and
R(, t) = 1I), the resolvent of (K), such that

R(t, s) =1y — f "d K(t, 0)° R(o,s) foralls, t€ [a, b].

II. For every f € G([a, b], X) the equation (K) with y(t,) = x has
one and only one solution y € G([a, b], X) given by

y(®) = R(t, ty)x + f :0 R(t, 0) df (0)

and y depends continuously on f, x and K.
II. If K € Gy° (i.e. K € G* and K(t, t) = 0) we have

R, s)=1Iy + f "R(t, 0) 0 d,K(o,5) foralls, t € [a, b].



596 C. S. HONIG [May

IV. The mapping K € Gy° > R € G}° is a bicontinuous (nonlinear)
bijection from the first space onto the second.

REMARK. Theorem 3 remains true if we replace G'° by its subspace
EY° of continuous functions, by its subspace E of functions U that satisfy

(SV°) lim SV[U? - Utl] =0 for every ¢, € [q, b],
t—’tl

by the corresponding spaces of functions of bounded variation, etc.

3. We now particularize Theorem 3 to (L). We fix a point 0 € [a, b];
given A: [a, b] — L(X) we write A € A5 if A(0) = 0 and if A satisfies
(SV°). (8V,,), (8V,), (SV,) denote the analogous for the first variable of the
properties (SV'°), (SV°), (SV®) in the second variable. We say that R: [a, b]
x [a, b] — L(X) is harmonic, and we write R € H, if R satisfies (SV"°),
(8V9), (8V,,), (SV,) and

(©) Rt t)=1Iy, R(t,0)oR(0,5)=R(,s) forals, g, t€E [a b].

HC® denotes H with the topology induced by E“°; analogously we define H .
The next theorem extends Theorems 3.2 and 3.3 of [M].

THEOREM 4. A. Given A € A5 we have:
I. There is one and only one R € H, the resolvent of A, such that

R(t, 5) = R(7, §) - f "dA() 2 R(r, s) foralls, 1, t € [a, b].

II. For every f € G([a, b], X) the equation (L) with y(s) = x has one
and only one solution y € G([a, b], X) given by

¥@ =R, )x + [ R(t, 0) df (0)

and y depends continuously on f, x and A.
III. A(t) = [{d R(0, s) ° R(s, 0) for all s € [a, b] and

R, $)=R(, o) + [LR(t, 1) ° dA(r) foralls, o, t € [g, B].

B. If R: [a, b] x [a, b] — L(X) satisfies (0) and (SV,) then R € H
and R is the resolvent of A given in 1IL.

C. On H the topologies of H*® and H,, coincide and the mapping
A € A; = R € H is a bicontinuous (nonlinear) bijection from the first
space onto the second.
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4. We now consider the problem (K), (F) with K € EY°; we write
K[y] = f for (K) and define Y, = F[K~1(0)]. Let a be associated to F by
Theorem 1; for s € [a, b] we define J(s) = f2da(?)  R(t, 5).

THEOREM 5. The following properties are equivalent:

() y = 0is the only solution of the system K[y] =0, F[y] = 0.

(i) J(ty): X — Y, is a continuous bijection.

From now on we suppose that the equivalent properties (i), (ii) are
satisfied and that

{feaaty - r17 € 6Cta 1, 20} = ¥,
We define
T@)=R(@, ty) o J(t,) ' Yo — X
and
G(t, ) =J(@) ° f * do(r) ° R(1, 8) = Y(s = 1V (@) ° J©)
+ [Y(s —ty) = Y(s - DIR(E, 3).
THEOREM 6. A.The system K[y] = g, F[y] = c has a solution
¥ € C([a, b], X) iff (g, ) € C([a, b], X) x Y,; then this solution is
y@®) =Ty + [ G, 5) deGs).

B. The system K[y] = f, F[¥] = ¢ has a solution y € G([a, b], X) iff
¢ — F(f) € Y,; then this solution is given by

Y0 =10 +T0le ~ FO) - [266.94,[ [ d,Kes 0) - 7).

THEOREM 7. The Green function G: [a, b] x [a, b] — L(X) has the
following properties:

(Gy) FIG,] = 0 for every s € |[a, b], where G () = G(¢, 5).

(Gy) G -Gty + f;odo_K(t, 0) ° G(0) = [-Y(s =)+ Y(s 1)l I x-

G,) G'(s)+ [ i&' *(0) ° d,K(o, s) = J(t) © a(s) where

G(t, 0) = G(t, 0) + Y(0 - HR(, 0) + Y(0 — t,)[J(2) ° J(0) - R(t, 0)].

(G3) For every s € [a, b], G is continuous for t # s.
(G,) G is uniformly of bounded semivariation in the second variable;
Gt b)=0;G(t,a)=0fora<t<b, G@a, a)=—1Iy.
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