INVARIANTS OF 3-MANIFOLDS

BY SYLVAIN E. CAPPELL AND JULIUS L. SHANESON

Communicated by Glen Bredon, October 28, 1974

The μ -invariant $\mu(M)$ of an oriented Z_2 -homology 3-sphere M is defined by Hirzebruch in [8], using Rohlin's Theorem [13], to be the mod 16 reduction of the signature of a framed manifold W with $M = \partial W$. In this paper we give a formula for $\mu(M)$ by studying M as a branched dihedral covering space of S^3 . Hilden [7] and Montesinos [9] have independently shown that every closed orientable 3-manifold is actually a 3-fold (dihedral) covering space of S^3 branched along a knot. Also see [1], [6] and [12].

Let α be a smooth or piecewise linear oriented knot $S^1 \subset S^3$. Let $V \subset S^3$ with $\partial V = \alpha$ be a Seifert surface for α . The Seifert form $L = L_V$ is the bilinear form of linking numbers of circles in V, with respect to a fixed orientation of S^3 , and L' is given as L'(x, y) = L(y, x). Let p be an odd integer. A knot β will be called a mod p characteristic knot (in V) of α if there is an embedding of S^1 in V, with nontrivial homology class $[\beta] \in H_1(V)$, so that the composite $S^1 \subset V \subset S^3$ is β ; and if $L(x, \beta) + L(\beta, x) \equiv 0 \pmod{p}$ for all x in $H_1(V)$.

A mod p characteristic knot β for α determines a homomorphism ρ of $\pi_1(S^3-\alpha)$ onto the dihedral group $Z_2\times_{\omega}Z_p$ of order 2p. The map ρ is characterized by the requirements that its composition with $Z_2\times_{\omega}Z_p\longrightarrow Z_2$ be nontrivial and that, for x in the image of π_1V , $\rho(x)\in Z_p\subset Z_2\times_{\omega}Z_p$ is the mod p reduction of $L(x,\beta)$. Hence β determines a p-fold dihedral branched covering $M_{\alpha,\beta}$ of S^3 , branched along α . It can be shown that every dihedral representation for α and associated branched cover of S^3 are determined by a characteristic knot for α in V. Further, dihedral representations can easily be classified in terms of equivalence classes of characteristic knots. By abuse of notation, we write M_{α} for $M_{\alpha,\beta}$; as "most" knots have at most one (up to conjugacy) dihedral representation of order 2p, this notation is usually strictly justified.

AMS (MOS) subject classifications (1970). Primary 55A99, 55A10, 55A25, 55A40; Secondary 57D65.

¹ In fact one can go directly from a Heegard splitting to a description of any orientable 3-manifold as a dihedral branched covering space.

Let $\alpha_0, \dots, \alpha_{(p-1)/2}$ be the disjoint oriented circles in M_{α} that lie over α , with α_0 of branching index 1 and α_i of index 2, $1 \le i \le (p-1)/2$. Orient M_{α} so that the covering projection has positive degree, and let v_{ij} denote the linking number of α_i with $\alpha_j, i \ne j$. If M_{α} is a homology sphere, then v_{ij} is an integer, but for a Z_2 -homology sphere v_{ij} will in general be a fraction with odd denominator. Let

$$v_{ii} = -\left(\sum_{i=1, i \neq i}^{(p-1)/2} v_{ij} + v_{i0}/2\right), \quad v_0 = -2 \sum_{i=1}^{(p-1)/2} v_{0i}.$$

Let J be the matrix $((v_{ij}))_{1 \le i,j \le (p-1)/2}$. K. Perko introduced v_0 and has computed v_{ij} and v_0 for many knots.

Let Σ_{β} be the *p*-fold cyclic branched cover of S^3 , branched along β , and oriented so that the covering projection τ has positive degree. For p a prime-power Σ_{β} is a rational homology sphere [5].² Let T be a covering translation corresponding to a meridian about β . Then

$$\tau^{-1}V = \overline{V} \cup_{\overline{B}} T(\overline{V}) \cup_{\overline{B}} \cdots \cup_{\overline{B}} T^{p-1}(\overline{V})$$

where $\tau|\overline{V}\colon\overline{V}\to V$ is a homeomorphism, and where $\overline{\beta}=\tau^{-1}(\beta)$. Let z_1 , \cdots , z_r be elements in the image of $H_1(V-\beta)$ in $H_1(V)$ which, together with $[\beta]$, form a basis (over Q) for this image. Let A_i be the matrix whose (j,k)th entry is the linking number in Σ_{β} of $(\tau|\overline{V})_*^{-1}z_j$ and $T_*^i((\tau|\overline{V})_*^{-1}z_k)$, $1 \le i \le p-1$. Let A have the (j,k)th entry $L_V(z_j,z_k)$. Let $R=((R_{ij}))$, $1 \le i,j \le (p-1)/2$ be the matrix of blocks where, with subscripts modulo p,

$$R_{ii} = A_{i-i} + A_{i-i} - A_{i+i} - A_{-i-i}, \quad i \neq j,$$

and

$$R_{ii} = A + A' - 2(A_1 + \cdots + A_{p-1}) - A_{2i} - A_{-2i}$$

For any knot η in a Z_2 -homology sphere, let $\Delta_{\eta}(t)$ denote its Alexander polynomial.

Let $\hat{\alpha}$ be any knot obtained from $\alpha_1, \dots, \alpha_{(p-1)/2}$ by connected sum using (p-3)/2 paths joining them. (Such paths may be described by lifting suitable paths from α to itself in S^3 .)

For any fraction p/q, p and q odd, let $\varphi(p/q) = 0$ if $p/q \equiv \pm 1 \pmod 8$ and $\varphi(p/q) = 8$ if $p/q \equiv \pm 3 \pmod 8$.

²When p is not a prime-power and Σ_{β} not a rational homology sphere, the definition of the matrix R is slightly more complicated.

If N is a Hermitian matrix, let $\sigma(N)$ denote its signature. Let ψ be a primative pth root of unity. Let B be a Seifert matrix for β .

THEOREM. Suppose that the branched p-fold dihedral covering space M_{α} of S^3 is a Z_2 -homology sphere. Assume that $v_{i,0} \equiv 2$ (4) for $1 \le i \le (p-1)/2$. Then the following holds modulo 16:

$$\mu(M_{\alpha}) = \sum_{i=1}^{p-1} \sigma(B + B' - B\psi^{i} - B'\psi^{-i}) + \left(\frac{p-1}{2}\right)\varphi \ (\Delta_{\alpha}(-1))$$

$$+\varphi(p)L_{\mathcal{V}}([\beta], [\beta]) + \varphi(\Delta_{\widehat{\sigma}}(-1)/\Delta_{\widehat{\sigma}}(1)) - (v_0/4) + \sigma(J) - \sigma(R).$$

The terms on the right of this formula are readily calculable. Note that some of the terms vary with the choice of characteristic knot β . (However, for suitable dihedral covers of ribbon knots these terms contribute zero. This gives a simple obstruction to a knot being a ribbon knot.) For a homology sphere M_{α} , the terms on the right are integers. For "bushel baskets" [6] of knots α , $\pi_1(M_{\alpha}) = 0.3$

some of the terms vary with the choice of characteristic knot β . For a homology sphere M_{α} , the terms on the right are integers. For "bushel baskets" [6] of knots α , $\pi_1(M_{\alpha}) = 0.3$

The condition on $v_{i,0}$ seems to be satisfied in all known cases for M_{α} a Z_2 -homology sphere [10], [11]. It implies that $\det J \neq 0$, which suffices for the theorem. Therefore it seems reasonable to conjecture at least that $\det J \neq 0$ if M_{α} is a Z_2 -homology sphere. For p=3, we can show that $v_{1,0}=2 \pmod{4}$. (See [2] and [10] for 2-bridge knots.) Hence the Theorem applies in this case. By [7] and [9] the case p=3 of our formula applies to every Z_2 -homology sphere.

REFERENCES

- 1. J. W. Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1919), 370-372.
- 2. C. Bankwitz and H. G. Schumann, Über Viergeflechte, Abh. Math. Sem. Univ. Hamburg 70 (1934), 263-284.
- 3. S. E. Cappell and J. L. Shaneson, Cyclic branched covering spaces Ann. of Math. Studies (Memorial Volume in honor of R. Fox).
- 4. A. H. Clifford, On the canonical form and dissection of a Riemann's surface, Proc. London Math. Soc. 8 (1877). 292-304.

³ For M a homotopy 3-sphere, $\mu(M)=0$ if $M\times S^1\times S^1$ is P.I. homeomorphic to $S^3\times S^1\times S^1$ and $\mu(M)\neq 0$ if $M\times S^1\times S^1$ is P.I. homeomorphic to the exotic manifold described in [14] which is homotopy equivalent but not P.I. homeomorphic to $S^3\times S^1\times S^1$.

- 5. R. H. Fox, A quick trip through knot theory, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 120-167. MR 25 #3522.
- 6. ———, Construction of simply connected 3-manifolds, Topology of 3-Manifolds and Related Topics (Proc. Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 213-216. MR 25 #3539.
- 7. H. Hilden, Every closed orientable 3-manifold is a 3-fold branched covering space of S^3 , Bull. Amer. Math. Soc. 80 (1974), 1243-1244.
- 8. F. Hirzebruch, W. P. Newmann and S. S. Koh, Differentiable manifolds and quadratic forms, Dekker, 1971.
- 9. M. Montesinos, A representation of closed, orientable 3-manifolds as 3-fold branched coverings of S³, Bull. Amer. Math. Soc. 80 (1974), 845-846.
 - 10. K. Perko, On dihedral covering spaces of knots (to appear).
- 11. ——, Unpublished tables available upon request to the author, 1 Chase Manhattan Plaza, New York, N. Y.
 - 12. K. Reidemeister, Knoten Theorie, Springer-Verlag, 1932.
- 13. V. A. Rohlin, New results in the theory of four-dimensional manifolds, Dokl. Akad. Nauk SSSR 84 (1952), 221-224. (Russian) MR 14, 573.
- 14. J. L. Shaneson, Wall's surgery obstruction groups for $G \times Z$, Ann of Math. (2) 90 (1969), 296-334. MR 39 #7614.

COURANT INSTITUTE OF MATHEMATICAL SCIENCES, NEW YORK UNIVERSITY, NEW YORK, NEW YORK 10012

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY, NEW BRUNSWICK, NEW JERSEY 08903