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1. Introduction. Let p: E —> B be a Hurewicz fibration whose base B 

and fiber F are homotopy equivalent to a finite complex, and let ƒ: E —> E 

be a fiber preserving map (over the identity). Let d: £IB —•> F denote the 
transgression map which arises from the Puppe sequence of the fibration. Our 
purpose is to relate the homomorphisms induced by the projection p and the 
transgression d with the Lefschetz number of g: F —> F, the restriction of 
ƒ to the fiber. 

THEOREM 1. There is an S-map TA B+ —• E* such that the composite 

H*(B) -£-+ H*(E) -^-+ H*(B) 

is multiplication by the Lefschetz number Ag of g. 

THEOREM 2. Fork>0, Agd* = 0: #*(F) —> #*(Î1B). 

Here H denotes singular cohomology with arbitrary coefficients. 

We call T* a transfer map. It is a generalization of the transfer for cov­
erings [6], [7] and for fiber bundles [1], [2], [3], [5]. A. Dold [4] has 
also defined transfer for a large category of maps. 

The existence of the transfer leads to various restrictions on the algebraic 
invariants attached to a fibration with base and fiber a finite complex. In 
particular we have 

COROLLARY 1. Let ƒ: E —* E be a fiber preserving map. Then 

(a) p* ® 1: h*(B) ^Z[A~X] —• h*(E) ^Z fAJ 1 ] is a split monomor-

phism for any cohomology theory h. 

(b) Agd#: nn(B) —*7Tn_1 (F)is trivial, n<2 (connectivity ofF). 

We will outline two constructions of the transfer each of interest in its 
own right. The first involves a reduction of the fibration case to the smooth 
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fiber bundle case. The second is a direct construction for fibrations, involving 
Spanier-Whitehead duality. Details of the results announced here and further 
applications will appear elsewhere. 

2. Smooth fiber bundles. Let p: E —> B be a smooth fiber bundle 
with base B and fiber F closed manifolds, and let ƒ: E —•* E be a fiber pre­
serving map. To construct the transfer in this case, choose an embedding E —• 
B x Rs homotopic to p. Its normal bundle 0 is inverse to the bundle a of 
tangents along the fiber. Let c: B* A Ss —•* E? denote the Pontryagin-Thom 
map, A: E —> E2 the diagonal inclusion into the fiber square and irx : E2 —• 
E projection onto the first factor. Since A(F) has normal bundle a we have 

c': (E2)"m - * E«W = E+ A S' . Define Tf to be 

5 + A S s - ^ ^ - & £ > (E2)"lm - ^ > F + A Ss, 

where (1, ƒ): E —* E2 sends e to (e, /(e)). Then 7y meets the requirements 
of Theorem 1. 

3. Fiber smoothing theorems. Let F —> E —> B be a fibration such 
that B is a closed smooth manifold and F is a finite complex. We have 

THEOREM 3 (Open fiber smoothing theorem). There exists an open 

regular neighborhood U of F and a smooth fiber bundle U—+E' —• B which 

is fiber homotopy equivalent to F—+ E —> B. 

Let Tn denote the ^-dimensional torus, n = dim (B). 

THEOREM 4 (Closed fiber smoothing theorem). There exists a closed 

regular neighborhood W of F and a smooth fiber bundle W x Tn —> E' —-> B 

which is fiber homotopy equivalent to F x Tn —» E x Tn —• B. 

The extension of the transfer from smooth fiber bundles to fibrations is 
accomplished by the closed fiber smoothing theorem, which asserts that any 
fibration p: E —• B, as above, is a retract of a smooth fiber bundle p\ E' —• 
B. Let E -^-» E' -&-+ E denote the asserted inclusion and retraction. If 
ƒ: E —• E is fiber preserving, 7y is then defined to be prXfp. 

The general case, i.e. where B is a finite complex can be reduced to the 
above case by embedding ^ a s a retract of a closed smooth manifold. 

4. Duality. A direct construction of transfer for fibrations is based on 
the following observation. Let ji: Ss —* F A F* be a duality map. Then 
F/\F+ is self dual in a canonical way, so that JJL has a 2s-dual p.: FA F + —• 5^. 
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LEMMA. Let g: F-+F. The composite Ss -*-* F A F+ - î ^ F A 
F*" -*-• S5 /wrs degree Ag. 

By an ex-fibration we mean an object E = (E, B, pA) where p: E —+ B 
is a fibration, A is a cross section, and (a) p has a lifting function with the 
property that if a is a path in B its lifting in E which begins at A(a(0)) is Aa. 
(b) E x {0} U A(£) x ƒ is a vertical retract ofExI. If p: E —* B is a 
fibration we have an ex-fibration E. The disjoint union of F and B, with p: 
E —* B and Â: 5 —•• E the obvious maps. 

THEOREM 5. If E is an ex-fibration there exists for some integer s, an 
ex-fibration E and an ex-map i±: SS X B —> Ê f\B E such that the restriction 
of ii to each fiber is a duality map. 

Once the existence of dual ex-fibrations is established the remaining 
aspects of Spanier-Whitehead duality carry over easily to ex-fibrations over a 
fixed space B. To define transfer for a fibration p: E —* B and fiber pre­
serving map ƒ: E —• E let Ê be dual to E. We have 

Identifying the section to a point on each side yields 7y: Ss A B+ —• Ss A 
F + . It follows from the Lemma that rf meets the requirements of Theorem 1. 
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