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Introduction. We consider nonsingular vector fields on compact connected 
C°° manifolds. The question is: What orbit structures occur in which homotopy 
classes of nonsingular vector fields? We show that in dimensions 4 and greater, a 
nonsingular Morse-Smale (NMS) vector field occurs in each homotopy class. 
Under the additional assumption that the first Betti number of the manifold is 
nonzero, we show that a nonsingular volume-preserving (NVP) vector field occurs 
in each homotopy class. These results are based on the round handle decom­
position theorem, interesting in its own right as a structure theorem for mani­
folds whose Euler characteristic is 0. 

Let M be a compact manifold whose boundary has been partitioned into 
two unions of components: dM = d_M U d+M, b_M n d+M = 0. Then 
the following are equivalent: 

1. X(9_M) = X(M). 
2. x(3+M) = x(M). 
3. There exists a nonsingular vector field on M pointing inward on d_M 

and outward on d+M. 

DEFINITION. The pair (Af, d_M) will be called a flow manifold if 1, 2 
and 3 above are true. This does not exclude the possibility, of course, that 
d_M, d+M, or dM may be empty. 

DEFINITION. A nonsingular Morse-Smale (NMS) vector field V on the 
flow manifold (M9 3_M) is one which satisfies (a), (b) and (c) below: 

(a) V has nonwandering set equal to a finite number of closed orbits, 
each having a hyperbolic Poincaré map. 

(b) The stable manifold (inset) of one closed orbit is transversal to the 
unstable manifold (outset) of any other closed orbit. 

(c) V points inward on d_M and outward on d+M. 

DEFINITIONS. A round handle of index k (and dimension n) is a copy 
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of Rk = S1 x Dk x Dn"k~1. The attaching region d_Rk of Rk is the sub­
manifold Sl xS*-1 x D ^ - 1 of dRk9 where S*"1 = 3D*. 

THEOREM 1 (ROUND HANDLE DECOMPOSITION THEOREM). Let 

(Mn, 3 _Af ) Z>e 0 /7(9\v manifold with n>4. Then M admits a decomposition of the 
form 

M=(d_M x I) + # J + - - - + Z ^ ° + * î + , " + ^ ü . 7 1 . 

This means that each / ^ is attached via a diffeomorphism of d_Rl
k to 

the boundary of the previous stuff, but never to 3_M x {0}. If we further 
assume that 3_Af =É 0 and 3+Af =£ 0, we may write 

M = (3_A/ x ƒ) + /ÎJ + • • • + / f e 2 , 

i.e. there exists a round handle decomposition avoiding round handles of 
extreme indices. 

COROLLARY 1. Let (Mn
9 d_M) be a flow manifold with n > 4. Then 

(Af, 3_M) admits an NMS vector field. If we further assume that d_M # 0 
ÛTA26? 3+AT TÉ 0, f/zefl (Af, 3_ Af) possesses an NMS vector field with no source 
or sink closed orbits. 

THEOREM 2. Z,e£ V be a nonsingular vector field on the flow manifold 
(Mn, 3_Af) pointing inward on d_M and outward on 3+Af. Assume M is 
orientable and n > 4. Then V is homotopic rel 3Af (through nonsingular vec­
tor fields) to an NMS vector field. If further 3_ Af + 0 and 3+Af =£ 0 rtew F 
ft homotopic rel 3Af to AW 7VM5 vector field with no sources or sinks. 

THEOREM 3. Let Mn be compact, connected, and orientable with x(M) 
= 0, n > 4, and Hl(M) =£ 0. Then any nonsingular vector field V on M is 
homotopic to a field Vx which preserves some smooth nonzero volume form 
co on M (which may be preassigned). 

PROOF (SKETCH). Using Hl(M) ^ 0 we first find a compact, connected, 
oriented submanifold i: Nn~1 C Af with i# [N] =£ 0 in Hn_1(M). By surgering 
N we may find a homologous submanifold N' and a vector field V' homotopic 
to V such that V' is nowhere tangent to N'. Then cutting Af open along N' 
gives us a flow manifold Af, and V' becomes a vector field V on M. By 
Theorem 2, K is homotopic rel 3Af to an NMS vector field Vt on M having no 
sources or sinks. This last property permits finding (one round handle at a 
time) a smooth nonzero volume £3 on Af preserved by Vv By carefully regluing 
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M to obtain M once again, Vx becomes a smooth nonsingular vector field Vx 

(which is not NMS), and S becomes a smooth nonzero volume w o n M pre­
served by Vt. The form co may as well have been preassigned, since Moser 
[4] shows any two volume forms are equivalent up to constant multiple under 
a diffeomorphism of M isotopic to the identity. 

Remarie. Theorem 3 fails on the 2-torus T2. 
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