ROUND HANDLES AND HOMOTOPY OF NONSINGULAR VECTOR FIELDS

BY DANIEL ASIMOV

Communicated by S. S. Chern, October 24, 1974

Introduction. We consider nonsingular vector fields on compact connected C^{∞} manifolds. The question is: What orbit structures occur in which homotopy classes of nonsingular vector fields? We show that in dimensions 4 and greater, a nonsingular Morse-Smale (NMS) vector field occurs in each homotopy class. Under the additional assumption that the first Betti number of the manifold is nonzero, we show that a nonsingular volume-preserving (NVP) vector field occurs in each homotopy class. These results are based on the round handle decomposition theorem, interesting in its own right as a structure theorem for manifolds whose Euler characteristic is 0.

Let M be a compact manifold whose boundary has been partitioned into two unions of components: $\partial M = \partial_- M \cup \partial_+ M$, $\partial_- M \cap \partial_+ M = \emptyset$. Then the following are equivalent:

- 1. $\chi(\partial_{-}M) = \chi(M)$.
- 2. $\chi(\partial_+ M) = \chi(M)$.
- 3. There exists a nonsingular vector field on M pointing inward on $\partial_{-}M$ and outward on $\partial_{+}M$.

DEFINITION. The pair $(M, \partial_{-}M)$ will be called a *flow manifold* if 1, 2 and 3 above are true. This does not exclude the possibility, of course, that $\partial_{-}M$, $\partial_{+}M$, or ∂M may be empty.

DEFINITION. A nonsingular Morse-Smale (NMS) vector field V on the flow manifold $(M, \partial_{-}M)$ is one which satisfies (a), (b) and (c) below:

- (a) V has nonwandering set equal to a finite number of closed orbits, each having a hyperbolic Poincaré map.
- (b) The stable manifold (inset) of one closed orbit is transversal to the unstable manifold (outset) of any other closed orbit.
 - (c) V points inward on $\partial_{-}M$ and outward on $\partial_{+}M$.

 DEFINITIONS. A round handle of index k (and dimension n) is a copy

AMS (MOS) subject classifications (1970). Primary 57D25.

of $R_k = S^1 \times D^k \times D^{n-k-1}$. The attaching region $\partial_- R_k$ of R_k is the submanifold $S^1 \times S^{k-1} \times D^{n-k-1}$ of ∂R_k , where $S^{k-1} = \partial D^k$.

THEOREM 1 (ROUND HANDLE DECOMPOSITION THEOREM). Let (M^n, ∂_M) be a flow manifold with $n \ge 4$. Then M admits a decomposition of the form

$$M = (\partial_{-}M \times I) + R_0^1 + \dots + R_0^{\alpha_0} + R_1^1 + \dots + R_{n-1}^{\alpha_{n-1}}.$$

This means that each R_k^i is attached via a diffeomorphism of $\partial_- R_k^i$ to the boundary of the previous stuff, but never to $\partial_- M \times \{0\}$. If we further assume that $\partial_- M \neq \emptyset$ and $\partial_+ M \neq \emptyset$, we may write

$$M = (\partial_{-}M \times I) + R_{1}^{1} + \cdots + R_{n-2}^{\beta_{n-2}},$$

i.e. there exists a round handle decomposition avoiding round handles of extreme indices.

COROLLARY 1. Let $(M^n, \partial_- M)$ be a flow manifold with $n \ge 4$. Then $(M, \partial_- M)$ admits an NMS vector field. If we further assume that $\partial_- M \ne \emptyset$ and $\partial_+ M \ne \emptyset$, then $(M, \partial_- M)$ possesses an NMS vector field with no source or sink closed orbits.

THEOREM 2. Let V be a nonsingular vector field on the flow manifold $(M^n, \partial_- M)$ pointing inward on $\partial_- M$ and outward on $\partial_+ M$. Assume M is orientable and $n \ge 4$. Then V is homotopic tel ∂M (through nonsingular vector fields) to an NMS vector field. If further $\partial_- M \ne \emptyset$ and $\partial_+ M \ne \emptyset$ then V is homotopic tel ∂M to an NMS vector field with no sources or sinks.

THEOREM 3. Let M^n be compact, connected, and orientable with $\chi(M) = 0$, $n \ge 4$, and $H^1(M) \ne 0$. Then any nonsingular vector field V on M is homotopic to a field V_1 which preserves some smooth nonzero volume form ω on M (which may be preassigned).

PROOF (SKETCH). Using $H^1(M) \neq 0$ we first find a compact, connected, oriented submanifold $i: N^{n-1} \subseteq M$ with $i_*[N] \neq 0$ in $H_{n-1}(M)$. By surgering N we may find a homologous submanifold N' and a vector field V' homotopic to V such that V' is nowhere tangent to N'. Then cutting M open along N' gives us a flow manifold \widetilde{M} , and V' becomes a vector field \widetilde{V} on \widetilde{M} . By Theorem 2, \widetilde{V} is homotopic rel $\partial \widetilde{M}$ to an NMS vector field \widetilde{V}_1 on \widetilde{M} having no sources or sinks. This last property permits finding (one round handle at a time) a smooth nonzero volume $\widetilde{\omega}$ on \widetilde{M} preserved by \widetilde{V}_1 . By carefully regluing

 \widetilde{M} to obtain M once again, \widetilde{V}_1 becomes a smooth nonsingular vector field V_1 (which is not NMS), and $\widetilde{\omega}$ becomes a smooth nonzero volume ω on M preserved by V_1 . The form ω may as well have been preassigned, since Moser [4] shows any two volume forms are equivalent up to constant multiple under a diffeomorphism of M isotopic to the identity.

Remark. Theorem 3 fails on the 2-torus T^2 .

REFERENCES

- 1. D. Asimov, Flow manifolds, Thesis, University of California, Berkeley, Calif., 1972.
 - 2. ——, Homotopy of nonsingular vector fields (preprint).
- 3. M. A. Kervaire, Le théorème de Barden-Mazur-Stallings, Lecture Notes in Math., vol. 48, Springer-Verlag, Berlin and New York, 1967, pp. 83-95.
- 4. J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965), 286-294. MR 32 #409.
- 5. B. L. Reinhart, Cobordism and the Euler number, Topology 2(1963), 173-177. MR 27 #2990.
- 6. S. Smale, Morse inequalities for a dynamical system, Bull. Amer. Math. Soc. 66 (1960), 43-49. MR 22 #8519.
- 7. ———, Differentiable dynamical systems, Bull. Amer. Math. Soc.. 73 (1967), 747-817. MR 37 #3598; erratum; 39, 1593.
- 8. ——, Stability and isotopy in discrete dynamical systems, Dynamical systems (edited by Peixoto), Academic Press, New York, 1973, pp. 527-530.
- 9. M. Shub, Stability and genericity for diffeomorphisms, dynamical systems, Academic Press, New York, 1973, pp. 493-514.
- 10. ——, Morse-Smale diffeomorphisms are unipotent on homology, dynamical systems, Academic Press, New York, 1973, pp. 489-491.

SCHOOL OF MATHEMATICS, UNIVERSITY OF MINNESOTA, MINNEAPOLIS, MINNESOTA 55455