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It is not possible to estimate the number of zeroes of an analytic function 
of several variables defined in a cone by reducing the problem to the 1-dimen­
sional case via Crofton's formula or similar tools of Nevanlinna theory (see 
e.g. [4]). We propose to extend the classical result due to Pfluger and Levin 
[3] using a potential theory approach. 

Let Sm~l be the unit sphere in the euclidean space Rm, D an open 
subset of Sm~1,dD smooth and of bounded curvature. For 0 < r < °° 
we set Dr = {tx: xED,0<t<r}. Denote by pt = pt(D) the positive 
number such that p1(p1 + m - 2) is the first eigenvalue of the Laplace-
Beltrami operator in D for the Dirichlet problem. Thus we have 

THEOREM. Let u be a subharmonic function in D^, such that 
u ^-°° , u(x) < i + B\xf for every x G £)«,. If p> pv D' is an arbitrary 
open set, D'CD, then there exists a constant C = C(D't p) such that 

H m r p - m + 2 [ ,Au<CB. 

If we identify Cn with R2n and ƒ is an analytic function in D, 
then log|/(z)|2 is subharmonic and 

oD(r) = ^p-f^Alogm\2 

represents the euclidean area of the variety {z GDr: f(z) = 0}. For n = 1, 
it is just the number of zeroes of ƒ in Dr; see [2]. Therefore we obtain 
the following 
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COROLLARY. Let f be a nonzero analytic function in D^ satisfying 
\f(z)\ <A exp(ff|z|p) for some p>px\ then f or any D' open, D' CD, 
we have 

KmoDir)r-p-m + 2 <CB. 

The details of the proof and related results appear in [1], here we just 
present the bare bones of the proof of the theorem. First, we can show that 

(i) the harmonic measure of Sr = {rx: x GD} at a fixed point JC0, 
behaves like 0(r~ P l ) , 

(ii) if Gr(x) is the Green function of Dr with pole at x0, 0 < e < 1 
fixed, then 

Gr(x) > const r l , r •—• ° ° 

for xeD'€r, \x\ >r0, 
(iii) we can reduce the general case to the one in which w < 0 on dD^. 
Then we apply Green's formula, assuming u(x0) ¥= -°°, 

r C ^r 
)DGr(x)Au =-u(x0) + JdDr"(x)-^(x) 

(d/dv derivative in the direction of the inner normal). By (i), (iii) and the 
assumption on u we have 

ƒ Gr(x)au = 0{f P l ) as r-

Applying (ii), the conclusion of the Theorem follows. 
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