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Introduction. In this note we announce sufficient conditions for an 
algebra to be a subalgebra of C°°(M) for some smooth manifold-without-
boundary M. In fact, we are able to determine when M is compact and, 
more generally, when M carries a Riemannian structure. We maintain the 
notation and terminology used in [5] and [7]. In addition, rry will denote 
the unique maximal ideal in the stalk Ap. We assume throughout this note 
that A is a geometrically homogeneous, harmonic, strongly semisimple, 
R-algebra with identity. We also assume that A is strongly regular and note 
that, as a consequence, / is a continuous real-valued function on r(A), for 
each ƒ G A [1] . For the sake of brevity, we call an algebra satisfying the 
above conditions smooth. 

Results. If mp is an Ap-module of finite type, then we set n • 
6imA(Mp) equal to the minimal number of generators required for mp. 

DEFINITION 1. If there exists a positive integer k such that for each 
Mp E($(4), n - dimA(Mp) = k, then we say that A has finite naive dimen­
sion k, expressed by n • dim(A) = k. 

If o€H°(U, A), then by [o](p) we mean [o(p)] E mp/ml9 where 
pea 

DEFINITION 2. A is said to be locally framed if for each Mp E ($04) 
there exists a local unit ep at Mp, a relatively compact open neighborhood 
U of p with p G D C u(ep) C T(A)9 and sections ox, • • • , ok E 
H°(T(A)9 A) such that the family 

([ol - djfeVjJfa), • • • , K - ok(q)ep](q)) 

spans mq/rr$9 where q G D and k = n • dim04). The sections a j ^ , • • • , 
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ok\fj E H°(Ü, A) will be called a system of parameters for Ü. 
The problem of deciding when T(A) is a topological manifold is a 

local problem, as the following theorem demonstrates. 

THEOREM 1. If U is a relatively compact open subset of T(A), then 
max(//°(f?, A)) = T(H°(Û, A)) a D. 

If ox, • • • , ok is a system of parameters for U then for each i = 
1, • • • , k we may consider the ideal It = (px, • • • , ot_x, aI+ ! > • • ' , ok) 
in #°(£7, A). 

DEFINITION 3. If p G U then we say that A is linearly idemfree at 
p if the algebra H°(U9 A)//f- has no nontrivial idempotents for i = 1, • • • , 
fc If A is linearly idemfree at each p E r(/l), then we call A linearly 
idemfree. 

THEOREM 2. If A is a smooth, locally framed, linearly idemfree al­
gebra, then T(A) is a k-dimensional topological manifold-without-boundary. 

We denote the ^-module of R-algebra derivations of A by DerR(/4). 
DEFINITION 4. If A is a smooth algebra with n • dim(/l) = k, then 

we say DerR(/l) is tangent to A provided 
(i) DerR04) is a finitely generated projective yl-module, 
(ii) for each Mp E ($(4), DeïK(A)/MpDeTK(A) is a real vector space 

of dimension k. 
Some technical modifications of the methods used in [2] and [6] allow 

us to linearize the problem of local coordinization, provided DerRG4) is 
tangent to A. In fact, this linear approximation is quite adequate. 

THEOREM 3. If A is a smooth algebra with n • dim(4) = k such 
that DerR(4) is tangent to A, then A is locally framed. 

DEFINITION 5. A is said to be a fc-differentiable algebra provided 
(i) A is smooth, 
(ii) n - dim(A) = k, 
(iii) DerR04) is tangent to A, 
(iv) A is linearly idemfree. 
Note that if A is a fc-differentiable algebra then, by Theorems 2 and 3, 

r(<4) is a topological fc-manifold. Actually, using a local version of a lemma 
due to Banaschewski [3], we are able to prove 
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THEOREM A. If A is a k-differentiable algebra then T(A) is a smooth 
manifold. 

DEFINITION 6. If M is a smooth manifold then a harmonic subalgebra 
A of C °°(M) is said to be a closed algebra of smooth functions on M pro­
vided A contains an atlas for M and A is closed under the differential 
operators corresponding to this atlas. 

Definition 6 enables us to sharpen Theorem 4. 

THEOREM 5. If A is a k-differentiable algebra then A is isomorphic 
to a closed algebra of smooth functions on T(A). 

THEOREM 6. If A is a k-differentiable algebra with <$(A) = Max(4), 
then A is isomorphic to a closed algebra of smooth Junctions on the compact 
manifold T(A). 

Bkouchehas obtained [4] an algebraic condition which determines when 
an open subset of max(4) is paracompact, for certain commutative rings A. 
Using this characterization and the well-known fact that every paracompact 
smooth manifold admits a Riemannian metric we deduce 

THEOREM 7. If A is a k-differentiable algebra such that A0 is a 
projective ideal, then A is isomorphic to a closed algebra of smooth functions 
on the Riemannian manifold T(A). 

Of course, if M is a Riemannian fc-manifold, then C°°(M) is a fc-dif-
ferentiable algebra having CQ(M)9 the smooth functions with compact sup­
port, as a projective ideal. A more comprehensive treatment of these results 
will appear elsewhere. 
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