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In 1950, J. H. C. Whitehead [15] proved that compact metric ANR's 
have the homotopy types of (countable) cell complexes and asked whether 
they have the homotopy types of Jïnite-dimensional cell complexes. In 1954 
in his talk at the International Congress of Mathematicians in Amsterdam [2], 
Borsuk asked whether they have the homotopy types of finite complexes. The 
simply-connected case was answered in 1957 by de Lyra [9], and in 1965, 
Wall [14] produced an applicable obstruction theory for finiteness. That year, 
Mather settled the case of products of S1 [10], and a year later, Gersten's 
product formula [5] for Wall's obstruction settled the case of products with 
polyhedra having zero Euler characteristic. Then Siebenmann proved it for a 
large class of (finite-dimensional) manifolds [13] and with Kirby extended 
this to all (finite-dimensional, compact) manifolds [12]. Finally, in 1973 
Chapman [3] added Hilbert cube manifolds and locally triangulable spaces. 

In this notice an affirmative solution of these questions is sketched, us­
ing the notions of cell-like mappings and Hilbert cube manifolds together with 
a recent result of R. Miller [11], which is a cell-like analog of Mather's theo­
rem and provides the basic existence theorem for cell-like mappings used here. 

A cell-like (CE) mapping is a proper surjection such that each point-in­
verse has the shape of a point. Cell-like mappings between locally compact, 
separable metric ANR's are homotopy equivalences [6], [7], [8]. The strategy 
of this argument is to construct, for any compact ANR^l a CE mapping ƒ: 
M@ —> A from some Hilbert cube manifold M®. Because M9 is homeo-
morphic, by Chapman's Triangulation Theorem, [3], to K x Q for some fi­
nite complex K (Q is the Hilbert cube), A must have the homotopy type of 
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K. To obtain this CE map from Miller's result that (essentially) A x S1 and 
the cone C(A) of A are Œ-images of Hubert cube manifolds (finite com­
plexes in the finite-dimensional case), the global property is reduced to a local 
one about Hubert cube manifold factors which allows the restriction of atten­
tion to the base of the cone C(A). The first step is a mapping cylinder theo­
rem. 

THEOREM 1. Let ƒ: MQ —+ A be a CE mapping of a Hubert cube 
manifold to a compact ANR A. Then there is a homeomorphism from M& 
to the mapping cylinder Mf of f which is homotopic to the natural inclusion 
i: MQ —+Mf of MQ into Mf. 

This provides a link between CE mappings and Hubert cube manifolds. 
A subset X of an ANR Y is said to have Property Z in F if it is closed and 
if for all open sets U of Y the inclusion U\X —> U is a homotopy equiva­
lence. If F is a Hubert cube manifold this is equivalent to the property that 
X lies in a collared submanifold. In the mapping cylinder Mf of Theorem 1, 
the base (the natural copy of A) has Property Z, a result obtained from an 
observation [4] of Doug Curtis—that the base A has Property Z in Mf if 
and only if ƒ is a "fine homotopy equivalence", i.e. for every open cover (J 
of A, there is a homotopy inverse g of f such that the homotopies to the 
identity of fg and gf may be limited by U and /_ 1(U)-and the result of 
Haver [6] that ƒ is a fine homotopy equivalence if and only if CE (see also 
Lacher [7], [8]). With a little Hubert cube manifold theory, this and Theorem 
1 yield the local characterization of ANR CE images of compact Hubert cube 
manifolds. 

THEOREM 2. For a compact metric ANR A, the following are equiva­
lent: 

(1) A is the CE image of a Hubert cube manifold', 
(2) the union of any two Hubert cube manifolds along a copy of A 

which has Property Z in each is a Hubert cube manifold factor, and 
(3) there exist two Hilbert cube manifolds whose union along a common 

copy of A is a Hilbert cube manifold factor. 

(The space X is here defined to be a Hilbert cube manifold factor if 
X x Q is a Hilbert cube manifold.) Coupling Theorem 2 with Miller's theo­
rem and regarding C(A) as A x [0, l]/A x {0}, it is easy to demonstrate, 
using the Homogeneity Theorem of Anderson and Chapman [1], that 
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THEOREM 3. Every compact metric ANR is the CE image of a Hubert 
cube manifold. 

This has, as indicated above, the following corollary: 

COROLLARY. Every compact metric ANR is homotopy-equivalent to a 
compact polyhedron. 
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