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Introduction. We denote by Sp(a) the sphere of radius a in the 
euclidean (p + l)-space Ep + 1, with the induced metric. In [1], S. S. Chern 
asks the following question; "Let S3(a) —> 57(1) be an isometric minimal 
immersion. Is it totally geodesic?". In this note we announce the following 
result. 

THEOREM. Let S3(a) C E* —• 5^(1) C EN+1 bean isometric mini
mal immersion which is not totally geodesic. Then N > 8. 

The class of isometric minimal immersions of Sp(a) —» 5^(1) was 
qualitatively described by M. do Carmo and N. R. Wallach in [3]. For p = 2, 
each admissible a determines a unique element of such a class. The main 
result of [3] shows that for each p > 3 and each admissible a > \/S9 there 
exists a continuum of distinct such immersions. Our Theorem is an answer to 
a question of quantitative character. This constitutes part of our doctoral dis
sertation at IMPA. I want to thank my adviser Professor M. do Carmo for 
suggesting this problem and for helpful conversations. 

Definitions and lemmas. Let H = (</>0, • • • , yN): S3(a) C E4 —> 
SN(l) C EN+1 be an isometric minimal immersion. Then [1] the coordinate 
functions are spherical harmonics on S3(a), i.e., each ^ (0 < / < N) is the 
restriction to S3(a) of a homogeneous polynomial of degree s, with four 
indeterminates satisfying the condition 

4 32</>. 

(i) Z~Y=O. 

Initially we set 

(2) cp. = n a x ? 1 - - - * * 4 

AMS (MOS) subject classifications (1970). Primary 53A10, 53C40. 

Key words and phrases. Minimal immersion, spherical harmonics. 

Copyright © 1974, American Mathematical Society 

1239 



1240 EDMILSON PONTES [November 

and write 

(3) H= £ Aai...a^---xl\ 
XQL—S 

where the vectors A^...^ = (a0^ . . . ^ • • , fl*...tt4) e EN+1 are the 
column-vectors of the matrix in which the /th row is made up of the coeffi
cients of ^ (0 < ƒ < N). We denote by V(H) the subspace of EN+1 

generated by the vectors Aa . . . n . 
1 "4 

Identify the set 

Xs = he*1 • • • X44; Z> at = s9 at > 0, integerl 

with the tetrahedron 

Ts = {(<*!,•••, <x4, 0, • • • , 0) G £' iV+1 ; Z a, = 5, a. > 0, integerl 

by means of the correspondence 

*ï* • • • X44 «-* K , • • • , a4, 0, • • • , 0). 

It can be shown that the equivalence relation defined on Ts: (ax, • • • , a4 , 0, 
• • • , 0 ) G f and (a'j, • • • , a4 , 0, • • • , 0) G TS are equivalent iff for each 
/ = 1, • • • , 4, at - a'j = 0 (mod 2) decomposes 7* in 8 equivalence 
classes C„ / = 1, • • • , 8, if s > 2. Let TT: T5 -> EN+X be the map 

* ( « ! , - • • , a 4 , 0 , - - - , 0 ) =Aai...a^ 

and denote by ^-(/f) the subspace of EN+1 generated by 7r(Cj), / = 1, • • • , 8. 
With the above notation we have 

LEMMA A. Let H = *L Aa ,..a x[l • • • x 4
4 beanisometry of S*(a) 

in SN(l) where H is given by (3). Then V(H)= ^ ( f f ) © - " © Vs(H)Jf dim VfH) 

= 1,/= l , - - - , 8 . 

LEMMA B. Let H = (</?0,- • • , ^ ) : S3(a) C # 4 -> 5^(1) C J?**1 

be an isometric minimal immersion which is not totally geodesic. Then the 

dimension of V(H) is > 8. 

The Theorem follows immediately from Lemmas A and B. 
Sketches of proofs. First we establish some general facts. We indicate 

the inner product of A, B G EN+1 by AB (or A2 if A = B). 
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Under the conditions of Lemma A, we have 

(4) H2 = 'T A A Yai+/3i . . . r a4 + ^4 

and 

1 . . . /y t 1 (5) 1 = . - 2 5 Z , S!
 t -

2ai - - - "2*A 

Under the conditions of Lemma B, we have that the coordinate functions 
<pi9 i = 0, • • • , Nt are spherical harmonics. This implies for each element in 
T5~2 a linear relation of the type 

al(«l ^ K ^ c ^ + (<*2
 +2)(a2 +lM (a i-2)(a2+2)a3a4 

^ + (<X3 + 2)(a3 + lM(ar2)a2(o3 + 2)a4 

+ (a4 + 2)(a4 + lM(ar2)a2a3(a4 + 2) = °' 

Then using the fact that H preserves inner products, we compare the products 
of tangent vectors at convenient paths on S3(a) with those at the transformed 
paths on H(S3(a)). This yields relations between the vectors A„ „ . We 

al a 4 

exhibit some typical relations. 

^5000 u > ^(5-1)100 " > ^5000^(5-2)200 ^ u> 

^(5-2)110 + ^ (5 -1 )1 00^(^-3)1 20 = ( * - l > ï S ; 

2^(*-2)200 + 3^(5-i)ioo^(5-3)3oo = ̂ ( s - l)(s + 4)<T2*; 

2^(5-2)200^(5-2)020 + ^(5-1)100^(5-3)120 = "" ̂  5 (s ~ l)fl *. 

Similar relations are obtained for each permutation of 2 indices in Aa a a a . 
Lemma A. From the definitions of V(H) and ^.(//), i = 1, • • • , 8, we have 

F(#) = FjCff) +• • • + ^ W T h e l e m m a follows immediately from the 
fact that if Aar..a4e Vt{H) and A^...^ G K, (ff), with / # ƒ, then 

Aa . , . a Ap . . , p = 0. In order to show this, we first observe that ak 4- pk 

is odd for some k = 1, • • • , 4 (this follows from the definition of Vt (//)). 
Next we use (4), (5) and H2 = 1, and observe that the terms in (5) with odd 
exponents are zero. This proves our claim. 
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Lemma B. This is the crucial point of the proof. The proof of 
Lemma B is reduced to obtaining estimates for the dimensions of Vt(H)9 

i = 1, • • • , 8. Such estimates follow from the study of the relations be
tween the vectors A a . . . a , obtained from (6) and (7). We first show that 
if s is odd (even), then four (seven) of the subspaces Vf(H) necessarily have 
dimension > 1. Next we examine the hypothesis of nullity of some Vt(H) 

and conclude that in all cases the sum of the dimensions of the VfH), i = 1, 
• • • , 8, is greater than 8. The final and more delicate case occurs when we 
assume that the dimension of each V^H), i — 1, • • • , 8, is equal to 1. This 
assumption forces H to be totally geodesic, hence, a contradiction. 
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