ISOMETRIC MINIMAL IMMERSIONS OF $S^{3}(a)$ **IN** $S^{N}(1)$

BY EDMILSON PONTES

Communicated by S. S. Chern, May 30, 1974

Introduction. We denote by $S^{p}(a)$ the sphere of radius **a** in the euclidean (p + 1)-space E^{p+1} , with the induced metric. In [1], S. S. Chern asks the following question: "Let $S^{3}(a) \rightarrow S^{7}(1)$ be an isometric minimal immersion. Is it totally geodesic?". In this note we announce the following result.

THEOREM. Let $S^3(a) \subset E^4 \to S^N(1) \subset E^{N+1}$ be an isometric minimal immersion which is not totally geodesic. Then $N \ge 8$.

The class of isometric minimal immersions of $S^p(a) \to S^N(1)$ was qualitatively described by M. do Carmo and N. R. Wallach in [3]. For p = 2, each admissible **a** determines a unique element of such a class. The main result of [3] shows that for each $p \ge 3$ and each admissible $a \ge \sqrt{8}$, there exists a continuum of distinct such immersions. Our Theorem is an answer to a question of quantitative character. This constitutes part of our doctoral dissertation at IMPA. I want to thank my adviser Professor M. do Carmo for suggesting this problem and for helpful conversations.

Definitions and lemmas. Let $H = (\varphi_0, \dots, \varphi_N)$: $S^3(a) \subset E^4 \to S^N(1) \subset E^{N+1}$ be an isometric minimal immersion. Then [1] the coordinate functions are spherical harmonics on $S^3(a)$, i.e., each φ_i ($0 \le i \le N$) is the restriction to $S^3(a)$ of a homogeneous polynomial of degree *s*, with four indeterminates satisfying the condition

(1)
$$\sum_{k=1}^{4} \frac{\partial^2 \varphi_i}{\partial x_k^2} = 0.$$

Initially we set

(2)
$$\varphi_i = \sum_{\Sigma \alpha_i = s} a_{\alpha_1} \cdots \alpha_4 x_1^{\alpha_1} \cdots x_4^{\alpha_4},$$

AMS (MOS) subject classifications (1970). Primary 53A10, 53C40. Key words and phrases. Minimal immersion, spherical harmonics.

Copyright © 1974, American Mathematical Society

and write

(3)
$$H = \sum_{\sum \alpha_j = s} A_{\alpha_1 \cdots \alpha_4} x_1^{\alpha_1} \cdots x_4^{\alpha_4},$$

where the vectors $A_{\alpha_1 \cdots \alpha_4} = (a^0_{\alpha_1 \cdots \alpha_4}, \cdots, a^N_{\alpha_1 \cdots \alpha_4}) \in E^{N+1}$ are the column-vectors of the matrix in which the *i*th row is made up of the coefficients of φ_i ($0 \le i \le N$). We denote by V(H) the subspace of E^{N+1} generated by the vectors $A_{\alpha_1 \cdots \alpha_4}$.

Identify the set

$$X^{s} = \left\{ x_{1}^{\alpha_{1}} \cdots x_{4}^{\alpha_{4}}; \sum \alpha_{i} = s, \alpha_{i} \geq 0, \text{ integer} \right\}$$

with the tetrahedron

$$T^{s} = \left\{ (\alpha_{1}, \cdots, \alpha_{4}, 0, \cdots, 0) \in E^{N+1}; \sum \alpha_{i} = s, \alpha_{i} \geq 0, \text{ integer} \right\}$$

by means of the correspondence

$$x_1^{\alpha_1}\cdots x_4^{\alpha_4} \leftrightarrow (\alpha_1,\cdots, \alpha_4, 0,\cdots, 0)$$

It can be shown that the equivalence relation defined on $T^s: (\alpha_1, \dots, \alpha_4, 0, \dots, 0) \in T^s$ and $(\alpha'_1, \dots, \alpha'_4, 0, \dots, 0) \in T^s$ are equivalent iff for each $i = 1, \dots, 4, \alpha_i - \alpha'_i \equiv 0 \pmod{2}$ decomposes T^s in 8 equivalence classes $C_i, i = 1, \dots, 8$, if s > 2. Let $\pi: T^s \to E^{N+1}$ be the map

$$\pi(\alpha_1,\cdots,\alpha_4,0,\cdots,0)=A_{\alpha_1\cdots\alpha_A},$$

and denote by $V_i(H)$ the subspace of E^{N+1} generated by $\pi(C_i)$, $i = 1, \dots, 8$. With the above notation we have

LEMMA A. Let $H = \sum A_{\alpha_1 \cdots \alpha_4} x_1^{\alpha_1} \cdots x_4^{\alpha_4}$ be an isometry of $S^3(a)$ in $S^N(1)$ where H is given by (3). Then $V(H) = V_1(H) \oplus \cdots \oplus V_8(H)$, if dim $V_i(H) = 1$, $i = 1, \dots, 8$.

LEMMA B. Let $H = (\varphi_0, \dots, \varphi_N)$: $S^3(a) \subset E^4 \to S^N(1) \subset E^{N+1}$ be an isometric minimal immersion which is not totally geodesic. Then the dimension of V(H) is > 8.

The Theorem follows immediately from Lemmas A and B.

Sketches of proofs. First we establish some general facts. We indicate the inner product of $A, B \in E^{N+1}$ by AB (or A^2 if A = B).

Under the conditions of Lemma A, we have

(4)
$$H^2 = \sum_{\Sigma \alpha_i = s; \Sigma \beta_i = s} A_{\alpha_1 \cdots \alpha_4} A_{\beta_1 \cdots \beta_4} x_1^{\alpha_1 + \beta_1} \cdots x_4^{\alpha_4 + \beta_4},$$

and

(5)
$$1 = a^{-2s} \sum_{\sum \alpha_i = s} \frac{s!}{\alpha_1! \cdots \alpha_4!} x_1^{2\alpha_1} \cdots x_4^{2\alpha_4}.$$

Under the conditions of Lemma B, we have that the coordinate functions φ_i , $i = 0, \dots, N$, are spherical harmonics. This implies for each element in T^{s-2} a linear relation of the type

(6)

$$\alpha_{1}(\alpha_{1} - 1)A_{\alpha_{1}\alpha_{2}\alpha_{3}\alpha_{4}} + (\alpha_{2} + 2)(\alpha_{2} + 1)A_{(\alpha_{1} - 2)(\alpha_{2} + 2)\alpha_{3}\alpha_{4}} + (\alpha_{3} + 2)(\alpha_{3} + 1)A_{(\alpha_{1} - 2)\alpha_{2}(\alpha_{3} + 2)\alpha_{4}} + (\alpha_{4} + 2)(\alpha_{4} + 1)A_{(\alpha_{1} - 2)\alpha_{2}\alpha_{3}(\alpha_{4} + 2)} = 0.$$

Then using the fact that H preserves inner products, we compare the products of tangent vectors at convenient paths on $S^3(a)$ with those at the transformed paths on $H(S^3(a))$. This yields relations between the vectors $A_{\alpha_1 \cdots \alpha_4}$. We exhibit some typical relations.

$$A_{s000}^{2} = a^{-2s}; \quad A_{(s-1)100}^{2} = a^{2(1-s)}; \quad A_{s000}A_{(s-2)200} < 0;$$
(7)
$$A_{(s-2)110}^{2} + 2A_{(s-1)100}A_{(s-3)120} = (s-1)a^{2(1-s)};$$

$$2A_{(s-2)200}^{2} + 3A_{(s-1)100}A_{(s-3)300} = 6^{-1}s(s-1)(s+4)a^{-2s};$$

$$2A_{(s-2)200}A_{(s-2)020} + A_{(s-1)100}A_{(s-3)120} = -6^{-1}s^{2}(s-1)a^{-2s}.$$

Similar relations are obtained for each permutation of 2 indices in $A_{\alpha_1 \alpha_2 \alpha_3 \alpha_4}$.

Lemma A. From the definitions of V(H) and $V_i(H)$, $i = 1, \dots, 8$, we have $V(H) = V_1(H) + \dots + V_8(H)$. The lemma follows immediately from the fact that if $A_{\alpha_1 \dots \alpha_4} \in V_i(H)$ and $A_{\beta_1 \dots \beta_4} \in V_i(H)$, with $i \neq j$, then $A_{\alpha_1 \dots \alpha_4} A_{\beta_1 \dots \beta_4} = 0$. In order to show this, we first observe that $\alpha_k + \beta_k$ is odd for some $k = 1, \dots, 4$ (this follows from the definition of $V_i(H)$). Next we use (4), (5) and $H^2 = 1$, and observe that the terms in (5) with odd exponents are zero. This proves our claim.

EDMILSON PONTES

Lemma B. This is the crucial point of the proof. The proof of Lemma B is reduced to obtaining estimates for the dimensions of $V_i(H)$, $i = 1, \dots, 8$. Such estimates follow from the study of the relations between the vectors $A_{\alpha_1 \dots \alpha_4}$, obtained from (6) and (7). We first show that if s is odd (even), then four (seven) of the subspaces $V_i(H)$ necessarily have dimension ≥ 1 . Next we examine the hypothesis of nullity of some $V_i(H)$ and conclude that in all cases the sum of the dimensions of the $V_i(H)$, i = 1, \dots , 8, is greater than 8. The final and more delicate case occurs when we assume that the dimension of each $V_i(H)$, $i = 1, \dots, 8$, is equal to 1. This assumption forces H to be totally geodesic, hence, a contradiction.

REFERENCES

1. S. S. Chern, Brief survey of minimal submanifolds. I, Mathematischen Forschurgsinstitut, Oberwolfach, Band 4, 1971.

2. M. P. do Carmo, *Brief survey of minimal submanifolds*. II, Mathematischen Forschungsinstitut, Oberwolfach, Band 4, 1971.

3. M. P. do Carmo and N. R. Wallach, Minimal immersions of spheres into spheres, Ann. of Math. (2) 93 (1971), 43-62. MR 43 #4048.

INSTITUTO DE MATEMATICA PURA E APLICADA, GUANABARA, BRASIL

1242