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This note describes results on the orbit structure of the exceptional 
hermitian symmetric space EJSO(10) • SO(2) analogous to those obtained for 
the space E7/E6 • 5*0(2) in [2]. 

1. J. Tits' construction of the complex Lie algebra @6. Let A be the 

algebra C © C with componentwise multiplication, and define the trace of 
an element of A to be the sum of its two components. As in [2], let J 
be the 27-dimensional Jordan algebra of hermitian 3 x 3 matrices over the 
complex Cayley numbers. Write A0 and J 0 for the subsets of A and J 
consisting of elements with zero trace. Also let Der (J) be the Lie algebra of 
derivations of J and let {L(A)}(B) = A o B denote multiplication in J. 
Now define an anticommutative multiplication [ , ] on the complex vector 
space j = (A0 <g) J 0 ) + Der (J) by means of the following rules: 

(a) [D, D'] is the usual commutator for D, D' G Der (J). 

(b) [Dya®A]=a®D(A) for aeA0,A€J0> and DGDer(J ) . 
(c) [a ® A, b <8> B] = KTi (ab)[L(A)9 L(B)] for a, b e A0 and 

A, Be j 0 . 
Then g is the complex Lie algebra @6. 

If we put e = (1, ~ 1) G A0, then A0 = C • e, so g = ( c ' e ® Jo) + 

Der (J), and the multiplication in g is determined by the single rule 

[e ® A + A e ® A' +D'] = e 0 {D(A') - D\A)} + [L(A)9 L(A')] + [D, D'] 

for A9 A' G J 0 and D, D' G Der (J). 
Let A' be the set of elements in A of the form (w, w*), where w* 
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is the complex conjugate of w. Let J' be the set of matrices in J whose 
entries are real Cayley numbers. Choose an element (*', /, k) from the set 
{(1, 2, 3), (2, 3, 1), (3, 1, 2)} and (in the notation of [2, §5]) let J" be 
the subset of J whose entries are of the form %tEt 4- fyEj 4- %kEk +Ft{x^ 4-
Fj{Xj} + Fk{xk}9 where %i9 £., £fc are real numbers and v^~ lx,., yf-~\Xp 

xk are real Cayley numbers. If we substitute A' and J ' for A and J 
in the above construction, we obtain a compact real form gc of g. If in­
stead we substitute A' and J", we obtain a noncompact real form fl0 of 
8 with Cartan index - 14. 

All of the above results come from [7]. 

2. Conventions. Put Xc = E6/SO(10) • SO{2) and let X0 be the 
noncompact dual of Xc. Define f and m0 as in [2, §1] , write X0 = 
GJK and Xc = GJK as in [2, §2] , and define m+ , m", £, £2, and fu 

(for uexn+) as in [2, § § 3 , 4 ] . 

Let K denote the subspace of J consisting of elements of the form 
FjiXj} 4-F;.{xy}, where xt and Xj are complex Cayley numbers. 

3. Realization of X0 as a bounded symmetric domain. Using the 
construction of g0 and $c in §1, we find that m+ and m~ are isomor­
phic to K. If we identify m+ and m" with K, then for each u G m+ = 
K, fu can be viewed as the endomorphism of m~ = K defined by 

fu = 2{L{uoU^-[L(u\L{u*)]}. 

Hence by Langlands' theorem (cf. [2, §4]), we obtain 

THEOREM 1. 1 Ï = { M G ( ( : L(U O U*) - [L(u\ L(u*)] < I}. 

As in [2], this description can be compared with those obtained by 
M. Koecher [6] and M. Ise [4], [5], who used different methods. Renum­
bering so that the choices of (/, ƒ, k) coincide, we obtain 

THEOREM 2. The three descriptions of 12 are identical as point sets. 

4. Notations. If c and d are nonnegative integers such that 0 < 
c 4- d < 16, let K(c, d) denote the set of matrices u in K such that fu 

has c eigenvalues < 2 and d eigenvalues > 2 (hence 16 - c ~d eigen­
values = 2). Then 12 = K(16, 0) by Theorem 1. 

Let {e0, el9 • • • , e7} be the usual basis for the complex Cayley num­
bers. Define another basis {e'0, e\,'-'te1} by 
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e2t = V2(sfr\et 4- en_t) and e'2t+1 = V4(-V=Hk, 4- en_t\ 0 < t < 3. 

Let A be the set of matrices of K of the form Ft{re'0 + se'j}, where r 
and 5 are real numbers. If a and Z? are nonnegative integers with 0 < 
a + b < 2, let A(#, Z?) denote the Ad(£)-orbit of the set of matrices 
Ft {re'0 + se\} in A such that # of the numbers r2, s2 are < 1 and b 

of them are > 1. 

5. The G0-orbit structure of Xc = EJSO(IO) • 50(2). The following 
result is proved by means of general theory from [9] and a study of the 
eigenvalues of fu for u E K. 

THEOREM 3. The pullbacks under £ of the G0-orbits on Xc are the 

sets A(a, b), where a and b are nonnegative integers such that 0 < a + 

b < 2. These sets can be described in terms of the eigenvalues of fu, u G K, 
as follows: 

A(2, 0) = K(16, 0), 

A(0, 2) = K(0, 16) U K(4, 12) U K(8, 8) U K(0, 12) U K(4, 8) U f((0, 8), 

A(l, 1) = K(15, 1) U K(9, 7) U K(5, 11) U K(5, 7) U K(9, 1) U K(5, 1), 

A(1 ,0 )= K(15,0), 

A(0, 1) = K(8, 7) U K(4, 11) U K(4, 7), afid 

A(0, 0) = K(8, 0). 

Le/̂  S(a, b) denote the G0-orbit on Xc whose pullback under % is 

à(a, b). Then 

(a) The open G ̂ orbits on Xc are X0 = S(2, 0), 5(1, 1), and 

5(0, 2). 
(b) The topological boundaries in Xc of the open orbits 5(2, 0), 

5(1, 1), and 5(0, 2) are 5(1, 0) U 5(0, 0), 5(1, 0) U 5(0, 1) U 5(0, 0), 
and 5(0, 1) U 5(0, 0) respectively. 

(c) 5(0, 0) is the Bergman-Silov boundary of X0 in Xc, the unique 

closed G0-orbit on Xc. 

(d) S(a', b') is in the closure of S(a, b) if and only if a <a and 

b' <b. 

(Part (d) of Theorem 3 in [2] is incorrect. It should be identical to part 
(d) of the above theorem.) 
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6. Holomorphic arc components. Theorem 4 below is proved by means 
of results from [9] and the eigenvalue analysis mentioned in §5. The deter­
mination of the rank 1 holomorphic arc components necessitates some compu­
tations involving the orbit structure of the rank 1 hermitian symmetric space 
SU(6)/S(Ul x U5) (notation as in [3, p. 354]), whose noncompact dual has 
a bounded realization as the open unit ball in C5. 

THEOREM 4. Let a and b be nonnegative integers with 0 < a + b < 
2. Then the holomorphic arc components of the G^orbit S(a, b) are sym­

metric spaces of rank a + b whose pullbacks under £ are the sets Ad (K) • 
C(a, Z>), k G K, where the subset C(a, b) of m+ = K is described for each 

choice of a and b as follows: Choose (/, ƒ, k) as in §1. Then 

C(0,0) = {-F,{e7}}, 

C(l, 0) = W e0 + zxe\} + Ff{z2e'0 + z3e'2 + z,e\ + zse'6}: £ \zj< 1 , 
' m = \ ) 

C(0, 1) = F,{- e'0 + Zle\} + F,{?2e'0 + z3e'2 + z4e4 + z5e'6}: f \zj> if, 

C(a, b) = A(û, 6) w/̂ rc A + ô = 2. 

/« particular, the boundary components of X0 have pullbacks Ad (A:) • 
C(a, 0) w/zer^ A: G K and a = 0 or 1. 

Details and complete proofs for the results in this note and in the pre­
vious one [2] will appear elsewhere. 
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