ORBIT STRUCTURE OF THE EXCEPTIONAL HERMITIAN SYMMETRIC SPACES. II

BY DANIEL DRUCKER¹

Communicated by S. S. Chern, May 7, 1974

This note describes results on the orbit structure of the exceptional hermitian symmetric space $E_6/SO(10) \cdot SO(2)$ analogous to those obtained for the space $E_7/E_6 \cdot SO(2)$ in [2].

- 1. J. Tits' construction of the complex Lie algebra \mathfrak{E}_6 . Let A be the algebra $C \oplus C$ with componentwise multiplication, and define the trace of an element of A to be the sum of its two components. As in [2], let J be the 27-dimensional Jordan algebra of hermitian 3×3 matrices over the complex Cayley numbers. Write A_0 and J_0 for the subsets of A and J consisting of elements with zero trace. Also let Der(J) be the Lie algebra of derivations of J and let $\{L(A)\}(B) = A \circ B$ denote multiplication in J. Now define an anticommutative multiplication $[\ ,\]$ on the complex vector space $\mathfrak{g} = (A_0 \otimes J_0) + Der(J)$ by means of the following rules:
 - (a) [D, D'] is the usual commutator for $D, D' \in Der(\mathcal{J})$.
 - (b) $[D, a \otimes A] = a \otimes D(A)$ for $a \in A_0, A \in J_0$, and $D \in Der(J)$.
- (c) $[a \otimes A, b \otimes B] = \frac{1}{2} \operatorname{Tr}(ab)[L(A), L(B)]$ for $a, b \in A_0$ and $A, B \in J_0$.

Then g is the complex Lie algebra &6.

If we put $e = (1, -1) \in A_0$, then $A_0 = C \cdot e$, so $\mathfrak{g} = (C \cdot e \otimes J_0) + Der(J)$, and the multiplication in \mathfrak{g} is determined by the single rule

$$[e \otimes A + D, e \otimes A' + D'] = e \otimes \{D(A') - D'(A)\} + [L(A), L(A')] + [D, D']$$

for $A, A' \in \mathcal{J}_0$ and $D, D' \in \text{Der}(\mathcal{J})$.

Let A' be the set of elements in A of the form (w, w^*) , where w^*

AMS (MOS) subject classifications (1970). Primary 17B25, 17B60, 32M15, 53C35; Secondary 17C40.

Key words and phrases. Hermitian symmetric space, bounded symmetric domain, holomorphic arc component, boundary component.

¹Research partially supported by NSF GP-38724.

is the complex conjugate of w. Let J' be the set of matrices in J whose entries are real Cayley numbers. Choose an element (i, j, k) from the set $\{(1, 2, 3), (2, 3, 1), (3, 1, 2)\}$ and (in the notation of $[2, \S 5]$) let J'' be the subset of J whose entries are of the form $\xi_i E_i + \xi_j E_j + \xi_k E_k + F_i \{x_i\} + F_j \{x_j\} + F_k \{x_k\}$, where ξ_i, ξ_j, ξ_k are real numbers and $\sqrt{-1}x_i, \sqrt{-1}x_j, x_k$ are real Cayley numbers. If we substitute A' and J' for A and J in the above construction, we obtain a compact real form \mathfrak{g}_c of \mathfrak{g} . If instead we substitute A' and J'', we obtain a noncompact real form \mathfrak{g}_0 of \mathfrak{g} with Cartan index -14.

All of the above results come from [7].

2. Conventions. Put $X_c = E_6/SO(10) \cdot SO(2)$ and let X_0 be the noncompact dual of X_c . Define \mathfrak{k} and \mathfrak{m}_0 as in [2, §1], write $X_0 = G_0/K$ and $X_c = G_c/K$ as in [2, §2], and define \mathfrak{m}^+ , \mathfrak{m}^- , ξ , Ω , and f_u (for $u \in \mathfrak{m}^+$) as in [2, §§3, 4].

Let K denote the subspace of J consisting of elements of the form $F_i\{x_i\} + F_i\{x_i\}$, where x_i and x_i are complex Cayley numbers.

3. Realization of X_0 as a bounded symmetric domain. Using the construction of \mathfrak{g}_0 and \mathfrak{g}_c in §1, we find that \mathfrak{m}^+ and \mathfrak{m}^- are isomorphic to K. If we identify \mathfrak{m}^+ and \mathfrak{m}^- with K, then for each $u \in \mathfrak{m}^+ = K$, f_u can be viewed as the endomorphism of $\mathfrak{m}^- = K$ defined by

$$f_u = 2\{L(u \circ u^*) - [L(u), L(u^*)]\}.$$

Hence by Langlands' theorem (cf. [2, §4]), we obtain

Theorem 1.
$$\Omega = \{u \in K: L(u \circ u^*) - [L(u), L(u^*)] < I\}.$$

As in [2], this description can be compared with those obtained by M. Koecher [6] and M. Ise [4], [5], who used different methods. Renumbering so that the choices of (i, j, k) coincide, we obtain

Theorem 2. The three descriptions of Ω are identical as point sets.

4. Notations. If c and d are nonnegative integers such that $0 \le c + d \le 16$, let K(c, d) denote the set of matrices u in K such that f_u has c eigenvalues < 2 and d eigenvalues > 2 (hence 16 - c - d eigenvalues = 2). Then $\Omega = K(16, 0)$ by Theorem 1.

Let $\{e_0, e_1, \dots, e_7\}$ be the usual basis for the complex Cayley numbers. Define another basis $\{e'_0, e'_1, \dots, e'_7\}$ by

$$e'_{2t} = \frac{1}{2}(\sqrt{-1}e_t + e_{7-t})$$
 and $e'_{2t+1} = \frac{1}{2}(-\sqrt{-1}e_t + e_{7-t}), \quad 0 \le t \le 3.$

Let Δ be the set of matrices of K of the form $F_i\{re'_0 + se'_1\}$, where r and s are real numbers. If a and b are nonnegative integers with $0 \le a+b \le 2$, let $\Delta(a,b)$ denote the Ad(K)-orbit of the set of matrices $F_i\{re'_0 + se'_1\}$ in Δ such that a of the numbers r^2 , s^2 are <1 and b of them are >1.

5. The G_0 -orbit structure of $X_c = E_6/SO(10) \cdot SO(2)$. The following result is proved by means of general theory from [9] and a study of the eigenvalues of f_u for $u \in K$.

THEOREM 3. The pullbacks under ξ of the G_0 -orbits on X_c are the sets $\Delta(a,b)$, where a and b are nonnegative integers such that $0 \le a+b \le 2$. These sets can be described in terms of the eigenvalues of f_u , $u \in K$, as follows:

$$\Delta(2, 0) = K(16, 0),$$

$$\Delta(0, 2) = K(0, 16) \cup K(4, 12) \cup K(8, 8) \cup K(0, 12) \cup K(4, 8) \cup K(0, 8),$$

$$\Delta(1, 1) = K(15, 1) \cup K(9, 7) \cup K(5, 11) \cup K(5, 7) \cup K(9, 1) \cup K(5, 1),$$

$$\Delta(1, 0) = K(15, 0),$$

$$\Delta(0, 1) = K(8, 7) \cup K(4, 11) \cup K(4, 7)$$
, and

$$\Delta(0, 0) = K(8, 0).$$

Let S(a, b) denote the G_0 -orbit on X_c whose pullback under ξ is $\Delta(a, b)$. Then

- (a) The open G_0 -orbits on X_c are $X_0 = S(2, 0), S(1, 1),$ and S(0, 2).
- (b) The topological boundaries in X_c of the open orbits S(2, 0), S(1, 1), and S(0, 2) are $S(1, 0) \cup S(0, 0)$, $S(1, 0) \cup S(0, 1) \cup S(0, 0)$, and $S(0, 1) \cup S(0, 0)$ respectively.
- (c) S(0, 0) is the Bergman-Šilov boundary of X_0 in X_c , the unique closed G_0 -orbit on X_c .
- (d) S(a', b') is in the closure of S(a, b) if and only if $a' \le a$ and $b' \le b$.

(Part (d) of Theorem 3 in [2] is incorrect. It should be identical to part (d) of the above theorem.)

6. Holomorphic arc components. Theorem 4 below is proved by means of results from [9] and the eigenvalue analysis mentioned in §5. The determination of the rank 1 holomorphic arc components necessitates some computations involving the orbit structure of the rank 1 hermitian symmetric space $SU(6)/S(U_1 \times U_5)$ (notation as in [3, p. 354]), whose noncompact dual has a bounded realization as the open unit ball in \mathbb{C}^5 .

THEOREM 4. Let a and b be nonnegative integers with $0 \le a + b \le 2$. Then the holomorphic arc components of the G_0 -orbit S(a, b) are symmetric spaces of rank a + b whose pullbacks under ξ are the sets $Ad(K) \cdot C(a, b)$, $k \in K$, where the subset C(a, b) of $\mathfrak{m}^+ = K$ is described for each choice of a and b as follows: Choose (i, j, k) as in §1. Then

$$\begin{split} &C(0,\,0)=\,\{-\,F_i\,\{e_7\}\},\\ &C(1,\,0)=\left\{F_i\,\{-\,e_0'\,+\,z_1e_1'\,\}\,+\,F_j\,\{z_2e_0'\,+\,z_3e_2'\,+\,z_4e_4'\,+\,z_5e_6'\,\}\colon \sum_{m=1}^5|z_m|^2<\,1\right\},\\ &C(0,\,1)=\left\{F_i\,\{-\,e_0'\,+\,z_1e_1'\,\}\,+\,F_j\,\{z_2e_0'\,+\,z_3e_2'\,+\,z_4e_4'\,+\,z_5e_6'\,\}\colon \sum_{m=1}^5|z_m|^2>\,1\right\},\\ &C(a,\,b)=\Delta(a,\,b)\quad \text{when }\,a+b=2. \end{split}$$

In particular, the boundary components of X_0 have pullbacks $Ad(k) \cdot C(a, 0)$ where $k \in K$ and a = 0 or 1.

Details and complete proofs for the results in this note and in the previous one [2] will appear elsewhere.

REFERENCES

- 1. D. Drucker, Nonassociative algebras and hermitian symmetric spaces, Doctoral Dissertation, University of California, Berkeley, Calif., 1973.
- 2. ——, Orbit structure of the exceptional hermitian symmetric spaces. I, Bull. Amer. Math. Soc. 80 (1974), 285-289.
- 3. S. Helgason, Differential geometry and symmetric spaces, Pure and Appl. Math., vol. 12, Academic Press, New York, 1962. MR 26 #2986.
- 4. M. Ise, Realization of irreducible bounded symmetric domain of type (V), Proc. Japan Acad. 45 (1969), 233-237. MR 40 #2905.
- 5. M. Ise, On canonical realizations of bounded symmetric domains as matrix-spaces, Nagoya Math. J. 42 (1971), 115-133. MR 44 #7478.
- 6. M. Koecher, An elementary approach to bounded symmetric domains (with additions), Rice University, Houston, Texas, 1969. MR 41 #5652.

- 7. J. Tits, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles (announcement), 1963.
- 8. ———, Algèbres alternatives, algèbres de Jordan et algèbres de Lie exceptionelles. I. Construction, Nederl. Akad. Wetensch. Proc. Ser. A 69 = Indag. Math. 28 (1966), 223-237. MR 36 #2658.
- 9. J. A. Wolf, Fine structure of hermitian symmetric spaces, Geometry and Analysis of Symmetric Spaces, Marcel Dekker, New York, 1972.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WASHINGTON, SEATTLE, WASHINGTON 98195