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Let ir=(al9 • • • , an) denote a permutation of ZW={1, 2, • • • , n). 
A rise of TT is a pair ai9 ai+1 with ai<ai+1; & fall is a pair ai9 ai+1 with 
cti>ai+1. Thus if p = (bl9 • • • , bn) denotes another permutation of Zn9 

the two pairs ai9 ai+1; bi9 bi+1 are either both rises, both falls, a rise and a 
fall or a fall and a rise. We denote these four possibilities by RR9 FF9 RF9 

FR9 respectively. 
Let a>(n) denote the number of pairs of permutations n9 p with RR 

forbidden. More generally let œ(n9 k) denote the number of pairs ir9 p 
with exactly k occurrences of RR. 

THEOREM 1. We have 

oo „n too „n \— 1 

JÎ3D n\n\ l ^o nlnl) 

where co(0)=co(l) = l. 

THEOREM 2. 
oo _ n n - 1 -i _ Y 

(2) y -^— y <n> ®x* = — - — - — > 

wAere/(z)=2SU ( - I f (^ / / I ! / I ! ) . 

The pair TT9 p is said to be amicable if i?F and FR are both forbidden. 
Let <x(n) denote the number of amicable pairs of Zn; more generally let 
a(n9 k) denote the number of pairs TT9 p with k total occurrences of RF 
and FR. 

THEOREM 3. We have 

(3) A(z)A(-z) = 1, 

wAere ^(z)=2^Lo (x.(n)znjn\n\. 
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Equation (3) is equivalent to a(0)=l and 

(4) V (- lWffa(fc)a(n - k) = 0 (n > 0). 

Unfortunately (4) does not suffice to determine oi(ri). 

THEOREM 4. We have 

Ùxn\n\£« l-yA(x(l-y)) 

We next consider pairs of sequences. The sequence o=(al9 #2> • • • , aN) 
{ai e Z J is said to be of specification [e]=[e1, • • • , en] if each element 
in Zn occurs exactly ej times, where e± + - • -+en=N. Enumeration of 
sequences subject to various requirements has been discussed in a number 
of papers [1], [2], [3], [4], [5]. The pair ai9 ai+1 is a rise, fall or level 
according as at<ai+l9 ai>ai+l9 a~ai+1 ( /=1 , 2, • • • , N-l). 

Let r=(b1, - - - , bN) denote a sequence of specification [ƒ] = 
L/i> ' * ' > fn\- Then for the pair a, T there are now nine possibilities, 
namely 

(6) RR. FR, LR, RF, FF, LF, RL, FL, LL. 

Let Q{n)(r; e,f) denote the number of pairs of sequences a, r of speci
fication [e], [ƒ], respectively, and with exactly N—r—l occurrences of 
RR and put 

Q{n\x, y,z) =^Q{n\r;e,f)xyz\ 
e>f>r 

where x*=x{x • • • xe
n
n. 

THEOREM 5. We have 

(7) Q{n\x,y,z) = llDn, 

where 
Dn = 1 - S1(x)S1(y) + (1 - z)S,(x)S2(y) 

+ (-1)"(1 - zy-'S^Sniy) 

and Sk(x) is the kth elementary symmetric function of xl9 • • • , xn. In 
particular the generating function for pairs of sequences with RR forbidden 
is 

(8) {1 - S^S^y) + S2(x)S2(y) + ( - l r s ^ x ) ^ } " 1 . 

Let M{n)(r; e,f) denote the number of pairs a, r of specification [e], 
[ƒ] with exactly N—r—l occurrences of LL and put 

M{n\x, y, z) = J M{n\r; e,f)xeyf. 
eJ,r 
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THEOREM 6. We have 

( l - z ) ( l + f (1-Z)X^ I 
i fa 1 - (1 - z)x^,j 

l OU 1 - (1 - z)xiyi. 

(9) MM(x,y,z) = 

In particular the generating function for pairs with LL forbidden is 

(10) ( l - f - ^ i - ) " 1 . 
I i,̂ =i 1 + X J V 

Let y4? B denote any disjoint partition A?£0, J 5 ^ 0 of the set (6). 
Let C(e,f k) denote the number of pairs of sequences a, r with exactly 
k JB'S. Put 

^ ( * , y) = 2 C(e, ƒ, fc)jcV (fc = 0, 1, 2, • • •), 

where C(e,f9 0) = 1 ( t f=0, 1); F(x, y9 z) = 2Z.0z*Fk(x,y). 

THEOREM 7. fFe have 

(11) F(x z) = (1 - z ) f o(d - *)*, y) = (1 - z)F0(x, (1 - z)y) 
* * 1 - zF0((l - z)x, j;) 1 - zF0(x, (1 - z)y) * 

THEOREM 8. Le/ CA(e,f) denote the number of pairs a, r with A for
bidden. Then 

(i2) 2 c>>/>v = * , = vr—, • 
t ? F0(-Jf,j?) F0(*, - ƒ ) 

(13) FA(x9 y)FB(-x, y) = FA(x9 y)FB{x9 -y) = 1, 

where FA(x9 y) denotes the left member of (12). 

A fuller account of these and other results will appear elsewhere. 
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