ENUMERATION OF PAIRS OF PERMUTATIONS AND SEQUENCES ${ }^{1}$

BY L. CARLITZ, RICHARD SCOVILLE AND THERESA VAUGHAN
Communicated by Paul T. Bateman, January 10, 1974

Let $\pi=\left(a_{1}, \cdots, a_{n}\right)$ denote a permutation of $Z_{n}=\{1,2, \cdots, n\}$. A rise of π is a pair a_{i}, a_{i+1} with $a_{i}<a_{i+1}$; a fall is a pair a_{i}, a_{i+1} with $a_{i}>a_{i+1}$. Thus if $\rho=\left(b_{1}, \cdots, b_{n}\right)$ denotes another permutation of Z_{n}, the two pairs $a_{i}, a_{i+1} ; b_{i}, b_{i+1}$ are either both rises, both falls, a rise and a fall or a fall and a rise. We denote these four possibilities by $R R, F F, R F$, $F R$, respectively.

Let $\omega(n)$ denote the number of pairs of permutations π, ρ with $R R$ forbidden. More generally let $\omega(n, k)$ denote the number of pairs π, ρ with exactly k occurrences of $R R$.

Theorem 1. We have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \omega(n) \frac{z^{n}}{n!n!}=\left\{\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{n}}{n!n!}\right\}^{-1} \tag{1}
\end{equation*}
$$

where $\omega(0)=\omega(1)=1$.
Theorem 2.

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{z^{n}}{n!n!} \sum_{k=0}^{n-1} \omega(n, k) x^{k}=\frac{1-x}{f(z(1-x))-x} \tag{2}
\end{equation*}
$$

where $f(z)=\sum_{n=0}^{\infty}(-1)^{n}\left(z^{n} / n!n!\right)$.
The pair π, ρ is said to be amicable if $R F$ and $F R$ are both forbidden. Let $\alpha(n)$ denote the number of amicable pairs of Z_{n}; more generally let $\alpha(n, k)$ denote the number of pairs π, ρ with k total occurrences of $R F$ and $F R$.

Theorem 3. We have

$$
\begin{equation*}
A(z) A(-z)=1 \tag{3}
\end{equation*}
$$

where $A(z)=\sum_{n=0}^{\infty} \alpha(n) z^{n} / n!n!$.

[^0]Equation (3) is equivalent to $\alpha(0)=1$ and

$$
\begin{equation*}
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}^{2} \alpha(k) \alpha(n-k)=0 \quad(n>0) \tag{4}
\end{equation*}
$$

Unfortunately (4) does not suffice to determine $\alpha(n)$.
Theorem 4. We have

$$
\begin{equation*}
1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!n!} \sum_{k=0}^{n-1} \alpha(n, k) y^{k}=\frac{(1-y) A(x(1-y))}{1-y A(x(1-y))} \tag{5}
\end{equation*}
$$

We next consider pairs of sequences. The sequence $\sigma=\left(a_{1}, a_{2}, \cdots, a_{N}\right)$ ($a_{i} \in Z_{n}$) is said to be of specification $[e]=\left[e_{1}, \cdots, e_{n}\right]$ if each element in Z_{n} occurs exactly e_{j} times, where $e_{1}+\cdots+e_{n}=N$. Enumeration of sequences subject to various requirements has been discussed in a number of papers [1], [2], [3], [4], [5]. The pair a_{i}, a_{i+1} is a rise, fall or level according as $a_{i}<a_{i+1}, a_{i}>a_{i+1}, a_{i}=a_{i+1}(i=1,2, \cdots, N-1)$.

Let $\tau=\left(b_{1}, \cdots, b_{N}\right)$ denote a sequence of specification [f] $=$ $\left[f_{1}, \cdots, f_{n}\right]$. Then for the pair σ, τ there are now nine possibilities, namely

$$
\begin{equation*}
R R, F R, L R, R F, F F, L F, R L, F L, L L \tag{6}
\end{equation*}
$$

Let $Q^{(n)}(r ; \boldsymbol{e}, \boldsymbol{f})$ denote the number of pairs of sequences σ, τ of specification $[e],[f]$, respectively, and with exactly $N-r-1$ occurrences of $R R$ and put

$$
Q^{(n)}(\boldsymbol{x}, \boldsymbol{y}, z)=\sum_{e, f, r} Q^{(n)}(r ; \boldsymbol{e}, f) \boldsymbol{x}^{\mathbf{e}} \boldsymbol{y}^{\mathbf{e}} z^{r}
$$

where $\boldsymbol{x}^{\mathbf{e}}=x_{1}^{e_{1}} \cdots x_{n}^{e_{n}}$.
Theorem 5. We have

$$
\begin{equation*}
Q^{(n)}(x, y, z)=1 / D_{n} \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
D_{n}=1-S_{1}(x) S_{1}(y)+(1-z) S_{2}(x) S_{2}(y) & -\cdots \\
& +(-1)^{n}(1-z)^{n-1} S_{n}(x) S_{n}(y)
\end{aligned}
$$

and $S_{k}(x)$ is the kth elementary symmetric function of x_{1}, \cdots, x_{n}. In particular the generating function for pairs of sequences with $R R$ forbidden is
(8) $\quad\left\{1-S_{1}(x) S_{1}(y)+S_{2}(x) S_{2}(y)-\cdots+(-1)^{n} S_{n}(x) S_{n}(y)\right\}^{-1}$.

Let $M^{(n)}(r ; \boldsymbol{e}, \boldsymbol{f})$ denote the number of pairs σ, τ of specification [e], [f] with exactly $N-r-1$ occurrences of $L L$ and put

$$
M^{(n)}(\boldsymbol{x}, \boldsymbol{y}, z)=\sum_{e, f, r} M^{(n)}(r ; \boldsymbol{e}, \boldsymbol{f}) \boldsymbol{x}^{\mathbf{e}} \boldsymbol{y}^{\mathbf{f}}
$$

Theorem 6. We have

$$
\begin{equation*}
M^{(n)}(x, y, z)=\frac{(1-z)\left\{1+\sum_{i, j=1}^{n} \frac{(1-z) x_{i} y_{j}}{1-(1-z) x_{i} y_{j}}\right\}}{1-z\left\{1+\sum_{i, j=1}^{n} \frac{(1-z) x_{i} y_{j}}{1-(1-z) x_{i} y_{j}}\right\}} \tag{9}
\end{equation*}
$$

In particular the generating function for pairs with LL forbidden is

$$
\begin{equation*}
\left\{1-\sum_{i, j=1}^{n} \frac{x_{i} y_{j}}{1+x_{i} y_{j}}\right\}^{-1} \tag{10}
\end{equation*}
$$

Let A, B denote any disjoint partition $A \neq \varnothing, B \neq \varnothing$ of the set (6). Let $C(\boldsymbol{e}, \boldsymbol{f}, k)$ denote the number of pairs of sequences σ, τ with exactly k B's. Put

$$
F_{k}(\boldsymbol{x}, \boldsymbol{y})=\sum_{e, f} C(\boldsymbol{e}, \boldsymbol{f}, k) \boldsymbol{x}^{\mathbf{e}} \boldsymbol{y}^{\mathbf{f}} \quad(k=0,1,2, \cdots)
$$

where $C(\boldsymbol{e}, \boldsymbol{f}, 0)=1(N=0,1) ; F(\boldsymbol{x}, \boldsymbol{y}, z)=\sum_{k=0}^{\infty} z^{k} F_{k}(\boldsymbol{x}, \boldsymbol{y})$.
Theorem 7. We have

$$
\begin{equation*}
F(x, y, z)=\frac{(1-z) F_{0}((1-z) x, y)}{1-z F_{0}((1-z) x, y)}=\frac{(1-z) F_{0}(x,(1-z) y)}{1-z F_{0}(x,(1-z) y)} \tag{11}
\end{equation*}
$$

Theorem 8. Let $C_{A}(\boldsymbol{e}, \boldsymbol{f})$ denote the number of pairs σ, τ with A forbidden. Then

$$
\begin{equation*}
\sum_{e, f} C_{A}(e, f) x^{\mathrm{e}} y^{\mathrm{f}}=\frac{1}{F_{0}(-x, y)}=\frac{1}{F_{0}(x,-y)} \tag{12}
\end{equation*}
$$

Hence

$$
\begin{equation*}
F_{A}(x, y) F_{B}(-x, y)=F_{A}(x, y) F_{B}(x,-y)=1 \tag{13}
\end{equation*}
$$

where $F_{A}(\boldsymbol{x}, \boldsymbol{y})$ denotes the left member of (12).
A fuller account of these and other results will appear elsewhere.

References

1. L. Carlitz, Enumeration of sequences by rises and falls: A refinement of the Simon Newcomb problem, Duke Math. J. 39 (1972), 267-280. MR 45 \#1778.
2. -, Enumeration of up-down sequences, Discrete Math. 4 (1973), 273-286. MR 47 \#1625.
3. L. Carlitz and Richard Scoville, Up-down sequences, Duke Math. J. 39 (1972), 583-598. MR 47 \#1627.
4. L. Carlitz, Richard Scoville and Theresa Vaughan, Enumeration of permutations and sequences with restrictions, Duke Math. J. 40 (1973), 723-741.
5. J. F. Dillon and D. P. Roselle, Simon Newcomb's problem, SIAM J. Appl. Math. 17 (1969), 1086-1093. MR 41 \#1553.

Department of Mathematics, Duke University, Durham, North Carolina 27706

Current address (Vaughan): Department of Mathematics, University of North Carolina, Greensboro, North Carolina 27412

[^0]: AMS (MOS) subject classifications (1970). Primary 05A15, 10 A 45.
 Key words and phrases. Permutations, sequences, generating functions.
 ${ }^{1}$ Supported in part by NSF grant GP-37924.

