ENUMERATION OF PAIRS OF PERMUTATIONS AND SEQUENCES¹

BY L. CARLITZ, RICHARD SCOVILLE AND THERESA VAUGHAN

Communicated by Paul T. Bateman, January 10, 1974

Let $\pi = (a_1, \dots, a_n)$ denote a permutation of $Z_n = \{1, 2, \dots, n\}$. A rise of π is a pair a_i , a_{i+1} with $a_i < a_{i+1}$; a fall is a pair a_i , a_{i+1} with $a_i > a_{i+1}$. Thus if $\rho = (b_1, \dots, b_n)$ denotes another permutation of Z_n , the two pairs a_i , a_{i+1} ; b_i , b_{i+1} are either both rises, both falls, a rise and a fall or a fall and a rise. We denote these four possibilities by RR, FF, RF, FR, respectively.

Let $\omega(n)$ denote the number of pairs of permutations π , ρ with RR forbidden. More generally let $\omega(n, k)$ denote the number of pairs π , ρ with exactly k occurrences of RR.

THEOREM 1. We have

(1)
$$\sum_{n=0}^{\infty} \omega(n) \frac{z^n}{n! \, n!} = \left\{ \sum_{n=0}^{\infty} (-1)^n \frac{z^n}{n! \, n!} \right\}^{-1},$$

where $\omega(0) = \omega(1) = 1$.

THEOREM 2.

(2)
$$\sum_{n=0}^{\infty} \frac{z^n}{n! \, n!} \sum_{k=0}^{n-1} \omega(n, k) x^k = \frac{1-x}{f(z(1-x))-x},$$

where $f(z) = \sum_{n=0}^{\infty} (-1)^n (z^n/n!n!)$.

The pair π , ρ is said to be *amicable* if *RF* and *FR* are both forbidden. Let $\alpha(n)$ denote the number of amicable pairs of Z_n ; more generally let $\alpha(n, k)$ denote the number of pairs π , ρ with k total occurrences of *RF* and *FR*.

THEOREM 3. We have

$$(3) A(z)A(-z) = 1,$$

where $A(z) = \sum_{n=0}^{\infty} \alpha(n) z^n / n! n!$.

Key words and phrases. Permutations, sequences, generating functions.

¹ Supported in part by NSF grant GP-37924.

AMS (MOS) subject classifications (1970). Primary 05A15, 10A45.

Copyright © American Mathematical Society 1974

Equation (3) is equivalent to $\alpha(0)=1$ and

(4)
$$\sum_{k=0}^{n} (-1)^{k} {\binom{n}{k}}^{2} \alpha(k) \alpha(n-k) = 0 \qquad (n > 0).$$

Unfortunately (4) does not suffice to determine $\alpha(n)$.

THEOREM 4. We have

(5)
$$1 + \sum_{n=1}^{\infty} \frac{x^n}{n! \, n!} \sum_{k=0}^{n-1} \alpha(n, \, k) y^k = \frac{(1-y)A(x(1-y))}{1 - yA(x(1-y))}$$

We next consider pairs of sequences. The sequence $\sigma = (a_1, a_2, \dots, a_N)$ $(a_i \in Z_n)$ is said to be of specification $[e] = [e_1, \dots, e_n]$ if each element in Z_n occurs exactly e_i times, where $e_1 + \dots + e_n = N$. Enumeration of sequences subject to various requirements has been discussed in a number of papers [1], [2], [3], [4], [5]. The pair a_i , a_{i+1} is a rise, fall or level according as $a_i < a_{i+1}$, $a_i > a_{i+1}$, $a_i = a_{i+1}$ $(i=1, 2, \dots, N-1)$.

Let $\tau = (b_1, \dots, b_N)$ denote a sequence of specification $[f] = [f_1, \dots, f_n]$. Then for the pair σ , τ there are now nine possibilities, namely

$$(6) \qquad RR, FR, LR, RF, FF, LF, RL, FL, LL$$

Let $Q^{(n)}(r; e, f)$ denote the number of pairs of sequences σ , τ of specification [e], [f], respectively, and with exactly N-r-1 occurrences of *RR* and put

$$Q^{(n)}(\mathbf{x},\mathbf{y},z) = \sum_{e,f,r} Q^{(n)}(r;e,f) \mathbf{x}^{e} \mathbf{y}^{e} z^{r},$$

where $x^{\mathbf{e}} = x_1^{e_1} \cdots x_n^{e_n}$.

THEOREM 5. We have

(7)
$$Q^{(n)}(x, y, z) = 1/D_n,$$

where

$$D_n = 1 - S_1(x)S_1(y) + (1 - z)S_2(x)S_2(y) - \cdots + (-1)^n(1 - z)^{n-1}S_n(x)S_n(y)$$

and $S_k(x)$ is the kth elementary symmetric function of x_1, \dots, x_n . In particular the generating function for pairs of sequences with RR forbidden is

(8)
$$\{1 - S_1(x)S_1(y) + S_2(x)S_2(y) - \dots + (-1)^n S_n(x)S_n(y)\}^{-1}.$$

Let $M^{(n)}(r; e, f)$ denote the number of pairs σ , τ of specification [e], [f] with exactly N-r-1 occurrences of LL and put

$$M^{(n)}(\boldsymbol{x},\boldsymbol{y},\boldsymbol{z}) = \sum_{\boldsymbol{e},\boldsymbol{f},\boldsymbol{r}} M^{(n)}(\boldsymbol{r};\boldsymbol{e},\boldsymbol{f}) \boldsymbol{x}^{\boldsymbol{e}} \boldsymbol{y}^{\boldsymbol{f}}.$$

882

THEOREM 6. We have

(9)
$$M^{(n)}(x, y, z) = \frac{(1-z)\left\{1 + \sum_{i,j=1}^{n} \frac{(1-z)x_i y_j}{1 - (1-z)x_i y_j}\right\}}{1 - z\left\{1 + \sum_{i,j=1}^{n} \frac{(1-z)x_i y_j}{1 - (1-z)x_i y_j}\right\}}$$

In particular the generating function for pairs with LL forbidden is

(10)
$$\left(1 - \sum_{i,j=1}^{n} \frac{x_i y_j}{1 + x_i y_j}\right)^{-1}.$$

Let A, B denote any disjoint partition $A \neq \emptyset$, $B \neq \emptyset$ of the set (6). Let C(e, f, k) denote the number of pairs of sequences σ , τ with exactly k B's. Put

$$F_k(\mathbf{x},\mathbf{y}) = \sum_{e,f} C(e,f,k) \mathbf{x}^e \mathbf{y}^f \qquad (k=0,1,2,\cdots),$$

where C(e, f, 0) = 1 (N=0, 1); $F(x, y, z) = \sum_{k=0}^{\infty} z^k F_k(x, y)$.

THEOREM 7. We have

(11)
$$F(x, y, z) = \frac{(1-z)F_0((1-z)x, y)}{1-zF_0((1-z)x, y)} = \frac{(1-z)F_0(x, (1-z)y)}{1-zF_0(x, (1-z)y)}.$$

THEOREM 8. Let $C_A(e, f)$ denote the number of pairs σ , τ with A forbidden. Then

(12)
$$\sum_{e,f} C_A(e,f) x^e y^f = \frac{1}{F_0(-x,y)} = \frac{1}{F_0(x,-y)}.$$

Hence

(13)
$$F_A(x, y)F_B(-x, y) = F_A(x, y)F_B(x, -y) = 1,$$

where $F_A(x, y)$ denotes the left member of (12).

A fuller account of these and other results will appear elsewhere.

References

1. L. Carlitz, Enumeration of sequences by rises and falls: A refinement of the Simon Newcomb problem, Duke Math. J. 39 (1972), 267–280. MR 45 #1778.

2. _____, Enumeration of up-down sequences, Discrete Math. 4 (1973), 273–286. MR 47 #1625.

3. L. Carlitz and Richard Scoville, Up-down sequences, Duke Math. J. 39 (1972), 583-598. MR 47 #1627.

1974]

4. L. Carlitz, Richard Scoville and Theresa Vaughan, Enumeration of permutations and sequences with restrictions, Duke Math. J. 40 (1973), 723-741.

5. J. F. Dillon and D. P. Roselle, *Simon Newcomb's problem*, SIAM J. Appl. Math. 17 (1969), 1086–1093. MR 41 #1553.

DEPARTMENT OF MATHEMATICS, DUKE UNIVERSITY, DURHAM, NORTH CAROLINA 27706

Current address (Vaughan): Department of Mathematics, University of North Carolina, Greensboro, North Carolina 27412