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When are two selfadjoint operators unitarily equivalent modulo the 
trace class? The version of this theorem in which "trace class" is replaced 
by "compact" is settled by the Weyl-von Neumann theorem [1]: If A 
and B are selfadjoint operators, there exists a unitary operator U such that 
VA U*—B is compact if and only if A and B have the same essential spectrum. 

The question of trace class equivalence is more delicate and requires a 
study of additional invariants. Thus the Kato-Rosenblum theorem states: 
If A and B are selfadjoint operators for which A—B is trace class, then A 
and B have unitarily equivalent absolutely continuous parts [1]. 

Our purpose in the present note is to announce the following answer 
to the question posed above. 

THEOREM. TWO bounded selfadjoint operators A and B are unitarily 
equivalent modulo the trace class if and only if 

(1) Aacis unitarily equivalent to Bac, 
(2) essential spectrum (A)=essential spectrum (B), 
(3) there exists a decomposition of the sets 7Tf(A) and 7rf(B), the isolated 

eigenvalues of A and B of finite multiplicity 

7Tf(A) = 7T^(A) union TTW(A)9 Trf{B) = TT^(B) union TTW{B), 

such that 

(a) 2 d(a"> sPessO0) + J d^bn' sP^s(^)) < °° ' 
aninir^i(A) bninir^(B) 

(b) 2 rf(*»> £(*»)) < ° ° 
an in ir JA) 

for some one-to-one correspondence g between the points ofirw{A) and7rw(B)t 

In this statement it is to be understood that the isolated eigenvalues are 
counted according to their multiplicity. 

The significance of conditions (a) and (b) is that if two bounded self­
adjoint operators A and B are unitarily equivalent modulo the trace class, 
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then for any d>0 there is a decomposition such that the sum of the three 
terms appearing on the left-hand sides of the inequalities of (a) and (b) is 
majorized by 

inf \\UAU* - B\\tv&Qe + Ô. 
J7 :unitary 

A similar theorem remains correct for unitary operators when the 
distances in hypothesis (3) are reinterpreted. 

The following result plays an important role in the proof. 

LEMMA. Let The a bounded self adjoint operator and suppose that T has 
purely singular spectrum. Then for any positive number ô9 there exists an 
operator K in trace class, with trace norm less than ô, such that T+K is 
diagonal. 

Thus it follows that any self adjoint operator with purely singular 
spectrum is the sum of a diagonal operator (that is an operator with a 
complete set of eigenvectors) and a trace class operator of arbitrarily 
small trace norm. 

The proof of the Lemma is based on the de la Valle Poussin [2] decom­
position theorem for measures whose use was to some extent motivated 
by a result of Aronszajn [3] and an example in Donoghue [4]. 

This result is basic for the considerations of Carey-Pincus [5]. The proof 
of the Theorem will appear in [6]. 
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