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The purpose of this note is to announce the closed form solution of the 
following extremal problem in graph connectivity (see [1] and [2]): 
compute the minimum number of edges and vertices in a graph with a 
given edge connectivity and a given number of minimum cardinality 
bonds. It is hoped that the solution to this problem will be helpful in 
work on the following apparently quite difficult problem posed by Van 
Slyke and Frank [7] : given the number of A>sets of edges of a graph con­
taining bonds, what are bounds for the number of &'-sets of edges con­
taining bonds, k'j£k! 

G denotes a graph with vertex and edge sets V(G) and E(G), both finite. 
Loops and multiple edges are allowed. A polygon of G is a connected 
subgraph of valency two. A multigon is a subgraph with at least two edges, 
that is either a polygon or a link graph after identification of multiple 
edges. A bond is a minimal nonempty set of edges that meets no polygon 
in just one edge. We define the edge connectivity X(G) of G to be 0 if 
G is disconnected, null or \V(G)\=-\. Otherwise 

X(G) = min{|£| \B is a bond of G}. 

For n and m positive integers put 

C(G) = \{B s E(G) | B is a A(G)-bond}|, 

E(n, m) = min{\E(G)\ | A(G) = n and C(G) = m}, 

V(n, m) = min{|K(G)| | A(G) = n and C(G) = m}. 

For definitions of terms not defined here the reader is referred to Tutte 
[5], [61. 
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THEOREM A. For n and m positive integers, and all rt integer 

(al) £(1, m) = m, 

(a2) F(l,m) = m + 1; 

£(2, m) = qi(m) = min{r0 + rx + • • • + rk U ^ + ^ 

( M ) (rh\ . 1 
+ ' " + ( 2 ) = m, mm r, £ 2j, 

K(2, m) = <?2(m) = min(r0 + rx + • • • + rk - k | ( ^ + ( ^ 

(b2) 
+ "' + (2 / m , m i n r ^ T 

£(n, m) = min nl 1 + r2 + r4 + 2r6 j 1 + r2 + 3r4 + 5r6 

(cl) n x 
= m, min T\. ^ 0>, 

(c2) ^ n ' m^ = m i n ( 2 + r2 + 2r41 1 + r2 + 3r4 = m, 
min r{ ^ 0} /or odd n g: 3; 

£(«, m) = min{*(r0 + r, + • • • + rk + S) + «'| ( ^ + ( r i + 2 ) 

F(„, m) = 4*(m) = min{r0 + rx + • • • + rk + Ô | ( ^ + ( r i + 2 ) 

/or et;en n > 4 

wAere fc^O, min{r0—2, rl9 • • • , r J^O, ó=0 or 1 awd d'=d except when 
«^6, öfnrf (i) rfc=l or (ii) fc=0 and r0=3, m w/wcA case ó'=0. 

Part (a) of the theorem is trivial. A simple proof of (b) can be given by 
defining the following equivalence relation: for e1,ezeE{G) we say 
ex ~e2 if either {eu e2} is a 2-bond or intersects no 2-bond. In fact, the 
proof given by this equivalence relation implies (bl) for general matroids. 
However, the proof cannot be generalized to higher connectivities since 
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Theorem A(cl) and (dl) are false even for regular (unimodular) matroids. 
This can be seen by considering the Kuratowski graphs K5 and KZtZ. 

Parts (c) and (d) are the heart of Theorem A. For a proof of (c) and (d) 
we first construct the appropriate graphs to show that the right-hand sides 
provide upper bounds. To complete the proof we use the notion of crossing 
bonds. Given G and bonds Bx and B2, we say Bx crosses B2 if i?i intersects 
two components of the graph produced from G by removing B2. The main 
results on crossing bonds are Lemmas 1 and 2 below. These lemmas allow 
us to apply induction in (c) and (d). 

LEMMA 1. IfX(G) is odd then G has no crossing A(G)-bonds. 

LEMMA 2. Suppose A(G)_2 is even. If G has a X(G)-bond that is not 
the star of a vertex, then either G is a multigon with adjacent vertices 
joined by X{G)\2 edges, or G has a X(G)-bond that is not crossed by a 
X(G)-bond and is not the star of a vertex. 

The notion of a A(G)-bond which is not crossed by a A(G)-bond resembles 
somewhat that of a hinge [5, p. 118]. In particular we note the similarity 
of Lemma 2 and [5, Theorem 11.34]. 

Using Theorem A it is not hard to prove that for each pair of positive 
integers n^2 and m there is a G with X(G)=n9 C(G)=m, \E(G)\=E(n, m) 
and \V(G)\ = V(n, m). However, for n=2 this result is false. The smallest 
example corresponds to ra=83. In fact, the unique G having A(G)=2, 
C(G)=83 and \E(G)\=E(2, 83)=19 has |F(G)| = 18>F(2, 83)=13+3 + 
2 + 2 - 3 = 17. 

Theorem A has the drawback that in (b)-(d) we only implicitly compute 
E(n, m) and V(n, m). Theorem B is an attempt to remedy this shortcom­
ing. 

Let m be a positive integer. We say that a sequence of integers 
0*o> ri> ' ' ' > rk) with m i n *\=2 is a 2-decomposition of m if 

A 2-decomposition is maximal if r0 is taken as large as possible, then rx 

is taken as large as possible, etc. A sequence of integers (r0, rl9 • • • , rk, ô) 
with min{r0—2, rl9 • • • , rfc}=0 and d=0 or 1 is a 2^decomposition of m 

Maximal 2*-decomposition is defined analogously to maximal 2-
decomposition. Maximal decompositions are similar to the "r-canonical 



1974] EDGES AND VERTICES IN A GRAPH 703 

representations" used by Katona [3] and Kruskal [4]. Let (̂ 0, sl9 • • •, sk) 
be a maximal 2-decomposition of ra, and let (s*, s*9 • • •, s*9 ô) be a 
maximal 2*-decomposition of m. Put 

p^m) = SQ + s1 + • • • +jfc, /?2(m) = J0 + î + ' • • +sk -k9 

p*(m) = sf + sf + • • • + sî + Ô. 

THEOREM B. For positive integers n9 m and k 
(al) £(1, m)=m9 

(a2) V(l9m)=m+l; 
(bl) Pl(m)-4£E(2, m)^Pl(m)9 

(b2) p2(m)-l<:V(29m)<:p2(m); 
(cl) E(n93k+l)=[n(2k+l+l)l2+i], 
(c2) V(n9 3(k-l)+l)=2(k-l)+l+l where n=3 is odd and 1=19 2, 3; 
(dl) np*(m)l2£E(n9m)<ïnp*(m)l2+l, 
(d2) V(n9 m)=p*(m) where n^.4 is even. 

In Theorem B(cl), [ • ] is the greatest integer function (e.g., [3/2] = 1). 
The formula given in (cl) is false for k=0 and 1=3 since E(n9 3)=2n+l 
for odd n^.3. 

Theorem B(a) is identical to Theorem A (a). Part (c) of Theorem B is 
easy to prove. The minimization problems in Theorem A(c) are in fact 
knapsack problems. To prove (b) and (d) it suffices by Theorem A(b) 
and (d) to prove pi(m)—4^q1(m)9 /?2(

m)—1=?2(>*0 and p*(m)^q*(m) 
(i.e., p*(m)=q*(rn)). These bounds are best possible. (E.g., px(594)= 
34+8+3+2+2=49, but #1(594)=33 + 12=45. m=594 is the smallest 
such example.) 

We indicate the proof of p1(m)—4^q1(m). For « = 2 an integer we 
define m1(ri)=min{m\p1(m)=n}. Clearly w^/ i )^®. It can be shown that 
every integer b^.4 is uniquely representable in the form b=n+k where 
ri^.2 and k are integers such that 

mx(n) + 1 < k = mx{n + 1) + 1 if mx(n + 1)< mx{n + 2), and 

= m^n + 2) + 2 if mx(n + 2 ) < mx(n + 1). 

Further m1(n+k)=(l)+m1(ri). 
One can prove using this recursion that m1{n+4)>\(£) for all «^2. 

But if pi(m)—4>q1(m) for some m9 then by considering the first such m 
we can find an n for which mx(n+4)^.\Q). This contradiction establishes 
p1(m)-4<:q1(m). 

One can dualize Theorem B for planar graphs. The resulting theorem 
computes the minimum number of edges and vertices in a planar graph 
having given (polygon) girth and a given number of waist circuits. 
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Theorem A can be used in a straightforward way to compute the maximum 
number of minimum cardinality bonds in a graph with a given number of 
edges or vertices and given edge connectivity. 

Complete proofs will appear elsewhere. 
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